Title of article :
Kinematics of a Cylindrical Particle at Low Reynolds Numbers in Asymmetrical Conditions
Author/Authors :
Champmartin, S LAMPA, Arts et Métiers ParisTech, Angers, France , Ambari, A LAMPA, Arts et Métiers ParisTech, Angers, France , Ben Richou, A Faculty of Sciences and Technics - Sultan Moulay Slimane University, Beni-Mellal, Morocco
Abstract :
This paper concerns the hydrodynamic interactions on a cylindrical particle in non-dilute regime at low
Reynolds numbers. The particle moves between two parallel walls with its axis parallel to the boundaries. A
numerical finite-volume procedure is implemented and a generalized resistance matrix is built by means of the
superposition principle. Three problems are solved: the settling of the particle, the transport of a neutrally and
of a non-neutrally buoyant particle in a Poiseuille flow. Concerning sedimentation, the settling velocity is
maximal off the symmetry plane and decreases when the confinement increases. The particle rotates in the
direction opposite to that of contact rolling. The particle induces a high pressure zone in the front and a low
pressure zone in the back, the difference of which is maximal in the symmetry plane. For a neutrally-buoyant
particle, the hydrodynamic interactions lead to a velocity lag between the particle and the undisturbed flow.
The magnitude of the velocity lag increases with confinement and eccentricity. The angular velocity and
pressure difference are opposite to the previous case. For a non-neutrally buoyant particle, three situations are
found depending on a dimensionless parameter similar to an inverse Shields number. For its extreme low and
high values, the particle is respectively either carried by the flow or settles against it whatever its position. For
intermediate values, the particle either settles close to the walls or is dragged by the flow close to the symmetry
plane. Similar results are obtained for the angular velocity and the pressure difference. All these results question
the assumption usually met in particulate transport in which the kinematics of the particle is often supposed to
be that of the flow.
Keywords :
Confined solid particle , Particle transportation , Resistance matrix , Hydrodynamic interactions
Journal title :
Astroparticle Physics