Title of article :
Evaluation of Partially Averaged Navier-Stokes Method in Simulating Flow Past a Sphere
Author/Authors :
Saroha, S Applied Mechanics Department - IIT Delhi, India , Sinha, S. S Applied Mechanics Department - IIT Delhi, India , Lakshmipathy, S Gexcon AS, Bergen, Norway
Abstract :
In recent past partially averaged Navier-Stokes equation (PANS) has been proposed as a scale-resolving
bridging method for turbulence computations. Despite the geometric simplicity of the involved boundary
conditions, the flow past a sphere is ripe with various complex flow phenomena, which make it an excellent
test bed to evaluate various computational fluid dynamics modelling methodologies − both in terms of
numerical schemes as well as turbulence models. Specifically, in this work we evaluate PANS in conjugation
with the standard k-ε model in terms of (i) influence of filter parameters, (ii) sensitivity to free stream
viscosity ratio and (iii) choice of numerical schemes at supercritical Reynolds number of 1.14x106. Careful
evaluations are made by comparing PANS results against available experimental data as well available
detached eddy simulation (DES) and large eddy simulation (LES) results. Our study finds that indeed − as
purported by the PANS theory − a reduction in the value of the first filter parameter (fk) successfully captures
the complex vortical structures that exist past a sphere, shows far superior performance than unsteady
Reynolds-averaged Navier-Stokes (URANS) simulations and somewhat improved performance even over
some of the LES studies reported in literature. Our study shows that in terms of most of the quantities of
interest, PANS performance is almost at par with that of DES.
Keywords :
Flow past a sphere , High Reynolds number , Scale-resolving methods , Computational Study
Journal title :
Astroparticle Physics