Title of article :
Expansion Wave Propagation into a Cavity
Author/Authors :
Whalley, M Flow Research Unit - School of Mechanical, Industrial and Aeronautical Engineering - University of the Witwatersrand, Johannesburg, South Africa , Skews, B Flow Research Unit - School of Mechanical, Industrial and Aeronautical Engineering - University of the Witwatersrand, Johannesburg, South Africa
Abstract :
The flow field which results from an expansion wave entering a cavity from an upstream tube, and the
focusing effect which occurs, is investigated. Different cavity geometries, different expansion wave pressure
ratios and different expansion wave widths are explored. As the expansion wave propagates into the cavity it
induces flow in the opposite direction and back down the walls. The flow experiences compression as it flows
out back into the tube because of the concave surface of the cavity it encounters. This can result in the
formation of shock waves which can propagate back up into the cavity. Very low pressure and temperature
regions can develop because of the focusing action of the expansion. A convenient way of generating an
expansion wave numerically and/or experimentally is in a shock tube. This consists of a tube divided into two
compartments, one at high pressure and one at low pressure separated by a frangible diaphragm. On bursting
the diaphragm, a shock wave travels in one direction and an expansion in the other towards the cavity. Whilst
ideal boundary conditions can be imposed in numerical simulation laboratory experiments are complicated by
the diaphragm being curved and having a finite opening time. The effect of an initially curved diaphragm is
briefly considered. The expansion wave pressure ratio was altered by changing the initial pressure ratio across
the diaphragm. For an initially high pressure ratio, supersonic flow can occur behind the trailing edge of the
expansion wave which has a marked influence on the flow. The width of the wave is dependent on the
distance of the diaphragm from the cavity and also has a significant influence on the flow. As the width of the
wave increases and the density gradient decreases, focusing effects becomes significantly weaker.
Correspondence between experiment and simulation is examined.
Keywords :
Wave focusing , Unsteady flow , Compressible flow
Journal title :
Astroparticle Physics