Other language title :
بهينه سازي انرژي و اكسرژي يك فرآيند كوچك مقياس مايع سازي گاز طبيعي از نوع چرخه انبساطي نيتروژن
Title of article :
Energy and Exergy Optimization of a mini-scale Nitrogen Dual Expander Process for Liquefaction of Natural Gas
Author/Authors :
Palizdar, Ali Institute of Liquefied Natural Gas (I-LNG) - School of Chemical Engineering - College of Engineering - University of Tehran , AmirAfshar, Saeedeh Institute of Liquefied Natural Gas (I-LNG) - School of Chemical Engineering - College of Engineering - University of Tehran , Ramezani, Talieh Institute of Liquefied Natural Gas (I-LNG) - School of Chemical Engineering - College of Engineering - University of Tehran , Nargessi, Zahra Institute of Liquefied Natural Gas (I-LNG) - School of Chemical Engineering - College of Engineering - University of Tehran , Abbasi, Mojgan Institute of Petroleum Engineering - School of Chemical Engineering - College of Engineering - University of Tehran , Vatani, Ali Institute of Liquefied Natural Gas (I-LNG) - School of Chemical Engineering - College of Engineering - University of Tehran
Abstract :
Nitrogen expansion processes are suitable for mini or small-scale liquefied natural gas plants, due to their simplicity and less equipment. However, they consume a high amount of energy and any attempt to reduce the energy consumption and improve the quality of energy (work potential of energy), leads to enhance the process efficiency and profitability. A mini-scale nitrogen dual expander natural gas liquefaction process is simulated and analyzed by Aspen HYSYS simulator. Then, in order to optimize energy performance of the process, some influencing variables are adjusted using the genetic algorithm approach provided by MATLAB software in two separate optimization cases with different objective functions. Specific energy consumption and total exergy destruction are considered as the objective functions of the optimization cases (namely energy and exergy cases), which represent quantity and quality of energy, respectively. The most important operating variables of the process, refrigerant molar flow, refrigerant temperatures and refrigerant pressures, are selected via a sensitivity analysis. The results indicate that in both of the optimization cases, the specific power consumption of the process is reduced 7.1%. However, the total exergy destruction for exergy case decreases 9.55% which is slightly a more desirable result than the energy case. Also, total exergy efficiency of the process in exergy case is 4.4% higher than the other case which reveals that considering the quality aspect of energy as the objective can improve the performance of the process more appropriately.
Farsi abstract :
فرآيندهاي انبساطي نيتروژن، به دليل سادگي و تجهيزات كم، براي واحدهاي مايع سازي گاز طبيعي در مقياس كوچك و بسيار كوچك
)ميني( مناسب هستند. با اين حال، مصرف بالاي انرژي در اين فرآيندها، هر تلاشي در زمينه كاهش مصرف انرژي و نيز ارتقاء كيفيت انرژي
)ظرفيت كاردهي انرژي( را براي افزايش راندمان و سودآوري فرآيند، مطلوب مي نمايد. در اين تحقيق، يك فرآيند مايع سازي گاز طبيعي از
نوع انبساطي نيتروژن با دو توربين با نرم افزار اسپن هايسيس شبيه سازي گرديده و مورد تحليل قرار گرفت. سپس به منظور بهينه سازي
مصرف انرژي در فرآيند، برخي متغيرهاي عملياتي تأثيرگذار، با استفاده از الگوريتم ژنتيك و در محيط نرم افزار متلب تنظيم گرديدند.
مصرف ويژه انرژي و مجموع نرخ تخريب اكسرژي كه به ترتيب گوياي كميت و كيفيت مصرف انرژي در فرآيند مي باشند، توابع هدف بهينه
سازي هستند كه در دو حالت جداگانه )حالت انرژي و حالت اكسرژي( بهينه مي شوند. دبي مولي مبرد، دماها و فشارهاي پايين و بالاي مبرد
در چرخه، مهمترين پارامترهاي عملياتي تأثيرگذار مي باشند كه با تحليل حساسيت انتخاب شدند. نتايج نشان داد كه در هر دو حالت بهينه
درصد كاهش پيدا كرد. همچنين 7/1 درصد كاهش يافت. اما مجموع نرخ تخريب اكسرژي در حالت اكسرژي، تا 9/55 سازي، مصرف ويژه
درصد بيشتر از حالت انرژي است كه اين امر نشان دهنده برتري انتخاب كيفيت / راندمان اكسرژي كل فرآيند در حالت اكسرژي تا 4/4
مصرف انرژي ب هعنوان تابع هدف بهينه سازي است
Keywords :
Liquefied natural gas , Nitrogen expansion , Optimization , Energy , Exergy destruction , Efficiency
Journal title :
Astroparticle Physics