Title of article :
A converse result concerning the periodic structure of commuting affine circle maps
Author/Authors :
Peña ، José Salvador Cánovas - Universidad Politecnica de Cartagena, Campus Muralla del Mar , Bas ، Antonio Linero - Universidad de Murcia, Campus de Espinardo , López ، Gabriel Soler - Universidad Politecnica de Cartagena
Pages :
20
From page :
5041
To page :
5060
Abstract :
We analyze the set of periods of a class of maps φd,κ : Z∆ → Z∆ defined by φd,κ(x) = dx + κ, d, κ ∈ Z∆, where ∆ is an integer greater than 1. This study is important to characterize completely the period sets of alternated systems f, g, f, g, . . . , where f, g : S1 → S1 are affine circle maps that commute, and to solve the converse problem of constructing commuting affine circle maps having a prescribed set of periods. All rights reserved. Qc 2016 Keywords: Affine maps, alternated system, periods, circle maps, degree, combinatorial dynamics, ring of residues modulo m, Abelian multiplicative group of residues modulo m, Euler function, congruence, order, generator.
Keywords :
Affine maps , alternated system , periods , circle maps , degree , combinatorial dynamics , ring of residues modulo m , Abelian multiplicative group of residues modulo m , Euler function , congruence , order , generator.
Journal title :
Journal of Nonlinear Science and Applications
Serial Year :
2016
Journal title :
Journal of Nonlinear Science and Applications
Record number :
2475590
Link To Document :
بازگشت