Title of article :
Quadratic rho- functional inequalities in beta-homogeneous normed spaces
Author/Authors :
Park ، Yuanfeng - Hanyang University , Lu ، Yinhua - ShenYang University of Technology , Cui ، Gang - Yanbian University , Jin ، Choonkil - Yanbian University
Pages :
7
From page :
104
To page :
110
Abstract :
In this paper, we solve the quadratic rho functional inequalities \[\|f(x+y)+f(xy)2f(x)2f(y)\|\leq\|\rho(4f(\frac{x+y}{2})+f(xy)2f(x)2f(y))\|,\] where rho is a fixed complex number with \(|\rho| lt;1 , and\[\|4f(\frac{x+y}{2})+f(xy)2f(x)2f(y)\|\leq\|\rho(f(x+y)+f(xy)2f(x)2f(y))\|,\] where rho is a fixed complex number with \(|\rho| lt;1 . Using the direct method, we prove the HyersUlam stability of the quadratic rho functional inequalities (1) and (2) in beta homogeneous complex Banach spaces.
Keywords :
Hyers , Ulam stability , beta , homogeneous space , quadratic rho , functional inequality
Journal title :
Journal of Nonlinear Science and Applications
Serial Year :
2017
Journal title :
Journal of Nonlinear Science and Applications
Record number :
2476137
Link To Document :
بازگشت