Title of article :
Uniform convexity in \(\ell_{p(\cdot)}\)
Author/Authors :
Bachar ، Mostafa - King Saud University , Bounkhel ، Messaoud - King Saud University , Khamsi ، Mohamed A. - King Fahd University of Petroleum and Minerals
Pages :
8
From page :
5292
To page :
5299
Abstract :
In this work, we investigate the variable exponent sequence space \(\ell_{p(\cdot)}\). In particular, we prove a geometric property similar to uniform convexity without the assumption \(\limsup_{n \to \infty} p(n) lt; \infty\). This property allows us to prove the analogue to Kirk s fixed point theorem in the modular vector space \(\ell_{p(\cdot)}\) under Nakano s formulation.
Keywords :
Fixed point , modular vector spaces , nonexpansive mapping , uniformly convex , variable exponent spaces
Journal title :
Journal of Nonlinear Science and Applications
Serial Year :
2017
Journal title :
Journal of Nonlinear Science and Applications
Record number :
2476728
Link To Document :
بازگشت