Author/Authors :
El-Moneam ، M. A. - Jazan University , Aly ، E. S. - Jazan University , Aiyashi ، M. A. - Jazan University
Abstract :
In this paper, we examine and explore the boundedness, periodicity, and global stability of the positive solutions of the rational difference equation y n + 1 = α 0 y n + α 1 y n − p + α 2 y n − q + α 3 y n − r + α 4 y n − s + α 5 y n − t /β 0 y n + β 1 y n − p + β 2 y n − q + β 3 y n − r + β 4 y n − s + β 5 y n − t where the coefficients α i , β i ∈ ( 0 , ∞ ) , i = 0 , 1 , 2 , 3 , 4 , 5 , and p , q , r , s , and t are positive integers. The initial conditions y − t , … , y − s , … , y − r , … , y − q , … , y − p , … , y − 1 , y 0 are arbitrary positive real numbers such that p q r s t . Some numerical examples will be given to illustrate our result.
Keywords :
Difference equation , boundedness , prime , period two solution , stability