Title of article :
Remote sensing-assisted mapping of quantitative attributes in Zagros open forests of Iran
Author/Authors :
Soleimannejad, L. Department of Forestry - Faculty of Natural Resources - University of Guilan, Sowmeh sara, Guilan, Iran , Bonyad, A.E. Department of Forestry - Faculty of Natural Resources - University of Guilan, Sowmeh sara, Guilan, Iran , Naghdi, R. Department of Forestry - Faculty of Natural Resources - University of Guilan, Sowmeh sara, Guilan, Iran
Pages :
16
From page :
215
To page :
230
Abstract :
The Zagros forests come as one of the most valuable ecosystems in western Iran. Therefore, accurate and up-todate information on basal area, canopy cover, and stem number per hectare of these forests are the important factors in the context of forest management and conservation. The main objective of this study was to estimate quantitative forest attributes using Landsat 8-OLI image data and Random Forest, a well-known machine learning technique. The results were shown the lowest out of bag error with the combination of 800 trees and 8 variables in each node as the optimal model parameters to classify forest canopy cover with overall accuracy and Kappa coefficient of 83% and 0.73 respectively, while those of classified mapping of basal area were 78% and 0.72, and also those of stem number per hectare were 75% and 0.69 respectively. All in all, the Random Forest classifier algorithm provided comparatively successful mapping results of quantitative attributes in Zagros open forests of Iran from Landsat 8-OLI image data.
Keywords :
Random forest classifiers , landsat 8-OLI data , Zagros forests , Iran
Journal title :
Astroparticle Physics
Serial Year :
2018
Record number :
2477152
Link To Document :
بازگشت