Title of article :
Numerical Study of Water Vapor Injection in the Combustion Chamber to Reduce Gas Turbine Fuel Consumption
Author/Authors :
Sharafoddini, R Department of Mechanical Engineering - Tehran Gharb branch - Islamic Azad University , Habibi, M Energy Technologies Research Division - Research Institute of Petroleum Industry , Pirmohammadi, M Department of Mechanical Engineering - Pardis Branch - Islamic Azad University
Abstract :
In this study, the effect of water vapor injection on the flow pattern, temperature contamination and emission
of pollutants has been studied. Also, the impact of the spray angle on the axis has been investigated and finally,
the effect of fuel type and geometry on the flow variables has been investigated. The results were compared
with numerical simulations performed by other researchers and the results showed that they are qualitatively
acceptable. The purpose of this work is to investigate the effect of the amount of water vapor on flame and NOx
released from combustion. The results showed that with the percentage of water injected, there were significant
changes in the temperature and pressure contour patterns of the combustion chamber. The results showed that
with the percentage of water injected, there were significant changes in the temperature and pressure contour
patterns of the combustion chamber. The results showed that the overall efficiency of the Brighton cycle can
be increased in the non-injecting mode from 91% to 95% for the combustion chamber mode by injecting 8%
water vapor. Also, an increase of more than 8% of water vapor will not have much effect on efficiency of gas
turbine and reduce fuel consumption.
Keywords :
Combustion chamber , Water vapor injection , Pollution release , Hexane , Fluent , Computational fluid dynamics
Journal title :
Astroparticle Physics