Author/Authors :
CEBALLOS, MANUEL, Universidad de Sevilla - Facultad de Matemáticas - Departamento de Geometría y Topología, Spain , NÚÑEZ, JUAN, Universidad de Sevilla - Facultad de Matemáticas - Departamento de Geometría y Topología, Spain , TENORIO, ÁNGEL F., Universidad Pablo de Olavide - Escuela Politécnica Superior - Dpto de Economía, Métodos Cuantitativos e H a Económica, Spain
Abstract :
This paper studies and analyzes the 2-dimensional combinatorial structure associated with Lie algebra gn, of strictly upper-triangular n ˟ n matrices, where n ϵ {1}. Some walks on this configuration are characterized by means of maximal abelian subalgebras in gn and the obtained results are applied to Representation Theory of Lie algebras
Keywords :
Triangular Configuration , Maximal Abelian Dimension , Matrix Algebra , Abelian Subalgebra