Title of article :
Using a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)
Author/Authors :
Hashemzadeh, E. Department of Industrial Engineering - K. N. Toosi University of Technology, Tehran, Iran , Hamidi, H. Department of Industrial Engineering - K. N. Toosi University of Technology, Tehran, Iran
Pages :
9
From page :
788
To page :
796
Abstract :
In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and creating association rules are included in dataset. In this method, through separating the data of more active users, those who are interested in more items, we make sample from the training set and continue finding the association rules on the selected sample. Therefore, while the training set gets smaller, the production speed of rules increases. At the same time, we will show that the quality of the produced rules has been improved. Among the advantages of the proposed method, it can be referred to its simplicity and rapid implementation. Moreover, through a sampling from training set, the speed of association rules will be increased.
Farsi abstract :
در اﯾﻦ ﻣﻘﺎﻟﻪ ﻗﺼﺪ دارﯾﻢ ﻗﻮاﻧﯿﻦ اﻧﺠﻤﻨﯽ را ﺑﻪ ﻣﻨﻈﻮر اﺳﺘﻔﺎده در ﺗﻮﺻﯿﻪ ﮔﺮﻫﺎ ﺑﻬﺒﻮد دﻫﯿﻢ. ﺳﯿﺴﺘﻢ ﻫﺎي ﺗﻮﺻﯿﻪ ﮔﺮ روﺷﯽ ﺑﺮاي اﯾﺠﺎد ﭘﯿﺸﻨﻬﺎدات ﺷﺨﺼﯽ ﺳﺎزي ﺷﺪه اراﺋﻪ ﻣﯽ دﻫﻨﺪ. ﯾﮑﯽ از ﻣﻬﻢ ﺗﺮﯾﻦ اﻧﻮاع ﺗﻮﺻﯿﻪ ﮔﺮﻫﺎ ﺗﺼﻔﯿﻪ ي ﻫﻤﮑﺎراﻧﻪ اﺳﺖ ﮐﻪ ﺑﻪ داده ﮐﺎوي در اﻃﻼﻋﺎت ﮐﺎرﺑﺮان و ﭘﯿﺸﻨﻬﺎد آﯾﺘﻢ ﻫﺎي ﻣﻨﺎﺳﺐ ﺑﻪ آن ﻫﺎ ﻣﯽ ﭘﺮدازد. از ﺟﻤﻠﻪ روش ﻫﺎي داده ﮐﺎوي، ﯾﺎﻓﺘﻦ ﻣﺠﻤﻮﻋﻪ آﯾﺘﻢ ﻫﺎي ﻣﮑﺮر و ﻗﻮاﻧﯿﻦ اﻧﺠﻤﻨﯽ ﻣﻮﺟﻮد در ﻣﺠﻤﻮﻋﻪ داده اﺳﺖ. در اﯾﻦ روش، ﺑﺎ ﺟﺪاﺳﺎزي اﻃﻼﻋﺎت ﮐﺎرﺑﺮان ﻓﻌﺎل ﺗﺮ، ﮐﺎرﺑﺮاﻧﯽ ﮐﻪ ﺑﻪ آﯾﺘﻢ ﻫﺎي ﺑﯿﺸﺘﺮي اﺑﺮاز ﻋﻼﻗﻤﻨﺪي ﮐﺮده اﻧﺪ، از ﻣﺠﻤﻮﻋﻪ ي آﻣﻮزﺷﯽ ﻧﻤﻮﻧﻪ ﺑﺮداري ﻣﯽ ﮐﻨﯿﻢ و ﯾﺎﻓﺘﻦ ﻗﻮاﻧﯿﻦ اﻧﺠﻤﻨﯽ را روي ﻧﻤﻮﻧﻪ ي اﻧﺘﺨﺎﺑﯽ اداﻣﻪ ﻣﯽ دﻫﯿﻢ. ﺑﺪﯾﻦ ﺗﺮﺗﯿﺐ ﺑﺎ ﮐﻮﭼﮏ ﺷﺪن ﻣﺠﻤﻮﻋﻪ ي آﻣﻮزﺷﯽ، ﺳﺮﻋﺖ ﺗﻮﻟﯿﺪ ﻗﻮاﻧﯿﻦ اﻧﺠﻤﻨﯽ ﺑﯿﺸﺘﺮ ﺧﻮاﻫﺪ ﺷﺪ. در ﻋﯿﻦ ﺣﺎل ﻧﺸﺎن ﺧﻮاﻫﯿﻢ داد ﮐﯿﻔﯿﺖ ﻗﻮاﻧﯿﻦ ﺗﻮﻟﯿﺪ ﺷﺪه ﻧﯿﺰ ﺑﻬﺒﻮد ﺧﻮاﻫﺪ ﯾﺎﻓﺖ. از ﻣﺰاﯾﺎي روش ﭘﯿﺸﻨﻬﺎدي ﺳﺎده و ﺳﺮﯾﻊ ﺑﻮدن اﺟﺮاي روش اﺳﺖ، ﺑﻪ ﻋﻼوه ﺑﺎ اﻧﺠﺎم ﻧﻤﻮﻧﻪ ﺑﺮداي از ﻣﺠﻤﻮﻋﻪ ي آﻣﻮزﺷﯽ، ﺳﺮﻋﺖ ﯾﺎﻓﺘﻦ ﻗﻮاﻧﯿﻦ اﻧﺠﻤﻨﯽ اﻓﺰاﯾﺶ ﺧﻮاﻫﺪ ﯾﺎﻓﺖ
Keywords :
Recommender Systems , Collaborative Filtering , Association Rules , Support , Confidence
Journal title :
International Journal of Engineering
Serial Year :
2016
Record number :
2507623
Link To Document :
بازگشت