Title of article :
The effect of external magnetic field on the density distributions and electromagnetic fields in the interaction of high-intensity short laser pulse with collisionless underdense plasma
Author/Authors :
Mahmoodi-Darian, Masoomeh Department of Physics - Karaj Branch - Islamic Azad University, Karaj , Ettehadi-Abari, Mehdi Physics Department and Laser Research Institute of Beheshti University - G.C., Evin - 19839 Tehran , Sedaghat, Mahsa Physics Department and Laser Research Institute of Beheshti University - G.C., Evin - 19839 Tehran
Pages :
7
From page :
33
To page :
39
Abstract :
Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range Ik2 ’ 10141016 W cm2 lm2. The collisionless effect is found to be significant when the incident laser intensity is less than 1016 W cm2 lm2. In the current work, the propagation of a high-frequency electromagnetic wave, for underdense collisionless plasma in the presence of an external magnetic field is investigated. When a constant magnetic field parallel to the laser pulse propagation direction is applied, the electrons rotate along the magnetic field lines and generate the electromagnetic part in the wake with a nonzero group velocity. Here, by considering the ponderomotive force in attendance of the external magnetic field and assuming the isothermal collisionless plasma, the nonlinear permittivity of the plasma medium is obtained and the equation of electromagnetic wave propagation in plasma is solved. Here, by considering the effect of the ponderomotive force in isothermal collisionless magnetized plasma, it is shown that by increasing the laser pulse intensity, the electrons density profile leads to steepening and the electron bunches of plasma become narrower. Moreover, it is found that the wavelength of electric and magnetic field oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison to the unmagnetized collisionless plasma.
Keywords :
Laser plasma interaction , Ponderomotive force , Underdense magnetized plasma , Nonrelativistic regime , Electrons density distribution
Journal title :
Journal of Theoretical and Applied Physics
Serial Year :
2016
Record number :
2508705
Link To Document :
بازگشت