Title of article :
Validation of Neural Network Predictions for the Outcome of Refractive Surgery for Myopia
Author/Authors :
Balidis, Miltos Ophthalmica Institute of Ophthalmology and Microsurgery, Thessaloniki, Greece , Papadopoulou, Ioanna Faculty of Medicine - Aristotle University of Thessaloniki, Thessaloniki, Greece , Malandris, Dimitris Faculty of Medicine - Aristotle University of Thessaloniki, Thessaloniki, Greece , Zachariadis, Zachos Ophthalmica Institute of Ophthalmology and Microsurgery, Thessaloniki, Greece , Sakellaris, Dimitrios Ophthalmica Institute of Ophthalmology and Microsurgery, Thessaloniki, Greece , Asteriadis, Solon Ophthalmica Institute of Ophthalmology and Microsurgery, Thessaloniki, Greece , Poulos, Marios Laboratory of Information Technologies Faculty of Information Science and Informatics - Ionian University, Corfu, Greece , Gatzioufas, Zisis Department of Ophthalmology, Cornea, Cataract and Refractive Surgery - University Hospital Basel, Basel, Switzerland , Anogeianakis, George Ophthalmica Institute of Ophthalmology and Microsurgery, Thessaloniki, Greece
Pages :
7
From page :
172
To page :
178
Abstract :
Background: Refractive surgery (RS) for myopia has made a very big progress regarding its safety and predictability of the outcome. Still, a small percentage of operations require retreatment. Therefore, both legally and ethically, patients should be informed that sometimes a corrective RS may be required. We addressed this issue using Neural Networks (NN) in RS for myopia. This was a recently developed validation study of a NN. Methods: We anonymously searched the Ophthalmica Institute of Ophthalmology and Microsurgery database for patients who underwent RS with PRK, LASEK, Epi-LASIK or LASIK between 2010 and 2018. We used a total of 13 factors related to RS. Data was divided into four sets of successful RS outcomes used for training the NN, successful RS outcomes used for testing the NN performance, RS outcomes that required retreatment used for training the NN and RS outcomes that required retreatment used for testing the NN performance. We created eight independent Learning Vector Quantization (LVQ) networks, each one responding to a specific query with 0 (for the retreat class) or 1 (for the correct class). The results of the 8 LVQs were then averaged so we could obtain a best estimate of the NN performance. Finally, a voting procedure was used to reach to a conclusion. Results: There was a statistically significant agreement (Cohen’s Kappa = 0.7658) between the predicted and the actual results regarding the need for retreatment. Our predictions had good sensitivity (0.8836) and specificity (0.9186). Conclusions: We validated our previously published results and confirmed our expectations for the NN we developed. Our results allow us to be optimistic about the future of NNs in predicting the outcome and, eventually, in planning RS.
Keywords :
Neural Network , Refractive Surgical Procedure , Myopia , PRK , LASEK , Epi-LASIK , LASIK , Computer Neural Network
Journal title :
Medical Hypothesis, Discovery & Innovation Ophthalmology
Serial Year :
2020
Record number :
2523278
Link To Document :
بازگشت