Title of article :
On finite-by-nilpotent profinite groups
Author/Authors :
Detomi, Eloisa Dipartimento di Ingegneria dellInformazione - DEI - Universitagrave - Italy , Morigi, Marta Dipartimento di Matematica - Università - di Bologna - Italy
Pages :
7
From page :
223
To page :
229
Abstract :
Let γn=[x1,…,xn] be the nth lower central word. Suppose that G is a profinite group where the conjugacy classes xγn(G) contains less than 2ℵ0 elements for any x∈G. We prove that then γn+1(G) has finite order. This generalizes the much celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite. Moreover, it implies that a profinite group G is finite-by-nilpotent if and only if there is a positive integer n such that xγn(G) contains less than 2ℵ0 elements, for any x∈G.
Keywords :
Conjucagy classes , verbal subgroups , profinite groups , FC-groups
Journal title :
International Journal of Group Theory
Serial Year :
2020
Record number :
2526081
Link To Document :
بازگشت