Other language title :
ﯾﮏ روش ﺟﺪﯾﺪ ﺑﺮاي ﺗﺨﻤﯿﻦ ﻣﻘﺎوﻣﺖ ﻓﺸﺎري ﺗﮏ ﻣﺤﻮره ﺳﻨﮓﻫﺎي ﺿﻌﯿﻒ
Title of article :
A New Method for Forecasting Uniaxial Compressive Strength of Weak Rocks
Author/Authors :
Fattahi, H Department of Earth Sciences Engineering - Arak University of Technology - Arak, Iran
Abstract :
The uniaxial compressive strength of weak rocks (UCSWR) is among the essential
parameters involved for the design of underground excavations, surface and underground
mines, foundations in/on rock masses, and oil wells as an input factor of some analytical
and empirical methods such as RMR and RMI. The direct standard approaches are
difficult, expensive, and time-consuming, especially with highly fractured, highly porous,
weak, and homogeneous rocks. Numerous endeavors have been made to develop indirect
approaches of predicting UCSWR. In this research work, a new intelligence method,
namely relevance vector regression (RVR), improved by the cuckoo search (CS) and
harmony search (HS) algorithms is introduced to forecast UCSWR. The HS and CS
algorithms are combined with RVR to determine the optimal values for the RVR
controlling factors. The optimized models (RVR-HS and RVR-CS) are employed to the
available data given in the open-source literature. In these models, the bulk density,
Brazilian tensile strength test, point load index test, and ultrasonic test are used as the
inputs, while UCSWR is the output parameter. The performances of the suggested
predictive models are tested according to two performance indices, i.e. mean square error
and determination coefficient. The results obtained show that RVR optimized by the HS
model can be successfully utilized for estimation of UCSWR with R2 = 0.9903 and MSE
= 0.0031203.
Farsi abstract :
ﻣﻘﺎوﻣﺖ ﻓﺸــﺎري ﺗﮏ ﻣﺤﻮره ﺳــﻨﮓﻫﺎي ﺿــﻌﯿﻒ از ﺟﻤﻠﻪ ﭘﺎراﻣﺘﺮﻫﺎي ﻣﻬﻢ در ﻃﺮاﺣﯽ ﻓﻀــﺎﻫﺎي زﯾﺮزﻣﯿﻨﯽ، ﻣﻌﺎدن روﺑﺎز و زﯾﺮزﻣﯿﻨﯽ، ﭘﯽﻫﺎي ﺳــﻨﮕﯽ و ﭼﺎهﻫﺎي ﻧﻔﺘﯽ اﺳﺖ ﮐﻪ ﺑﻪ ﻋﻨﻮان ﭘﺎراﻣﺘﺮ ورودي در روشﻫﺎي ﺗﺤﻠﯿﻠﯽ و ﺗﺠﺮﺑﯽ ﻣﺎﻧﻨﺪ RMR و RMI اﺳﺘﻔﺎده ﻣﯽﺷﻮد. روشﻫﺎي اﺳﺘﺎﻧﺪارد ﻣﺴﺘﻘﯿﻢ ﺑﺮاي ﺗﻌﯿﯿﻦ اﯾﻦ ﭘﺎراﻣﺘﺮ ﺳﺨﺖ، ﭘﺮﻫﺰﯾﻨﻪ و زﻣﺎﻧﺒﺮ اﺳﺖ ﻋﻠﯽ اﻟﺨﺼﻮص در ﺳﻨﮓﻫﺎﯾﯽ ﺑﺎ ﺷﮑﺴﺘﮕﯽ زﯾﺎد، ﺑﺎ ﺗﺨﻠﺨﻞ ﺑﺎﻻ، ﺿﻌﯿﻒ و ﻧﺎﻫﻤﮕﻦ. ﻟﺬا ﺗﻼشﻫﺎي ﻣﺘﻌﺪدي ﺑﺮاي ﺗﻮﺳﻌﻪ روشﻫﺎي ﻏﯿﺮﻣﺴﺘﻘﯿﻢ ﺑﺮاي ﭘﯿﺶ ﺑﯿﻨﯽ ﻣﻘﺎوﻣﺖ ﻓﺸﺎري ﺗﮏ ﻣﺤﻮره ﺳﻨﮓﻫﺎي ﺿﻌﯿﻒ اﻧﺠﺎم ﺷﺪه اﺳﺖ. در اﯾﻦ ﮐﺎر ﺗﺤﻘﯿﻘﺎﺗﯽ، ﯾﮏ روش ﻫﻮﺷﻤﻨﺪ ﺟﺪﯾﺪ، ﯾﻌﻨﯽ رﮔﺮﺳﯿﻮن ﺑﺮدار ارﺗﺒﺎط ﺑﻬﺒﻮد ﯾﺎﻓﺘﻪ ﺗﻮ ﺳﻂ اﻟﮕﻮرﯾﺘﻢﻫﺎي ﺟ ﺴﺘﺠﻮي ﻓﺎﺧﺘﻪ و ﺟ ﺴﺘﺠﻮي ﻫﺎرﻣﻮﻧﯽ ﺑﺮاي ﭘﯿﺶﺑﯿﻨﯽ ﻣﻘﺎوﻣﺖ ﻓ ﺸﺎري ﺗﮏ ﻣﺤﻮره ﺳﻨﮓﻫﺎي ﺿﻌﯿﻒ ﻣﻌﺮﻓﯽ ﺷﺪه ا ﺳﺖ. اﻟﮕﻮرﯾﺘﻢﻫﺎي ﺟﺴﺘﺠﻮي ﻓﺎﺧﺘﻪ و ﺟﺴﺘﺠﻮي ﻫﺎرﻣﻮﻧﯽ ﺑﺎ رﮔﺮﺳﯿﻮن ﺑﺮدار ارﺗﺒﺎط ﺗﺮﮐﯿﺐ ﻣﯽﺷﻮﻧﺪ ﺗﺎ ﻣﻘﺎدﯾﺮ ﺑﻬﯿﻨﻪ را ﺑﺮاي ﭘﺎراﻣﺘﺮﻫﺎي رﮔﺮﺳﯿﻮن ﺑﺮدار ارﺗﺒﺎط ﺗﻌﯿﯿﻦ ﮐﻨﻨﺪ. ﻣﺪلﻫﺎي ﺑﻬﯿﻨﻪ ﺳـﺎزي ﺷـﺪه )اﻟﮕﻮرﯾﺘﻢ ﺟﺴـﺘﺠﻮي ﻫﺎرﻣﻮﻧﯽ-رﮔﺮﺳـﯿﻮن ﺑﺮدار ارﺗﺒﺎط و اﻟﮕﻮرﯾﺘﻢ ﺟﺴـﺘﺠﻮي ﻓﺎﺧﺘﻪ -رﮔﺮﺳـﯿﻮن ﺑﺮدار ارﺗﺒﺎط( ﺑﺮاي دادهﻫﺎي ﻣﻮﺟﻮد ﺑﮑﺎر ﮔﺮﻓﺘﻪ ﺷــﺪﻧﺪ. در اﯾﻦ ﻣﺪلﻫﺎ از ﭼﮕﺎﻟﯽ، ﻣﻘﺎوﻣﺖ ﮐﺸــﺸــﯽ ﺑﺮزﯾﻠﯽ، ﺷــﺎﺧﺺ ﺑﺎرﮔﺬاري ﻧﻘﻄﻪاي و ﻧﺘﺎﯾﺞ آزﻣﺎﯾﺶ اوﻟﺘﺮاﺳــﻮﻧﯿﮏ ﺑﻌﻨﻮان ورودي، و ﻣﻘﺎوﻣﺖ ﻓﺸــﺎري ﺗﮏ ﻣﺤﻮره ﺳــﻨﮓﻫﺎي ﺿــﻌﯿﻒ ﺑﻌﻨﻮان ﭘﺎراﻣﺘﺮ ﺧﺮوﺟﯽ اﺳــﺘﻔﺎده ﻣﯽﺷــﻮد. ﻋﻤﻠﮑﺮد ﻣﺪلﻫﺎي ﭘﯿﺶ ﺑﯿﻨﯽ ﺑﺎ دو ﺷــﺎﺧﺺ ﻋﻤﻠﮑﺮد، ﯾﻌﻨﯽ ﻣﯿﺎﻧﮕﯿﻦ ﻣﺮﺑﻊ ﺧﻄﺎ و ﺿــﺮﯾﺐ ﺗﻌﯿﯿﻦ ﻣﻮرد ارزﯾﺎﺑﯽ ﻗﺮار ﮔﺮﻓﺘﻨﺪ. ﻧﺘﺎﯾﺞ ﺑﻪ د ﺳﺖ آﻣﺪه ﻧ ﺸﺎن ﻣﯽدﻫﺪ ﮐﻪ رﮔﺮ ﺳﯿﻮن ﺑﺮدار ارﺗﺒﺎط ﺑﻬﯿﻨﻪ ﺷﺪه ﺗﻮ ﺳﻂ اﻟﮕﻮرﯾﺘﻢ ﺟ ﺴﺘﺠﻮي ﻫﺎرﻣﻮﻧﯽ ﻣﯽﺗﻮاﻧﺪ ﺑﺮاي ﺗﺨﻤﯿﻦ ﻣﻘﺎوﻣﺖ ﻓﺸﺎري ﺗﮏ ﻣﺤﻮره ﺳﻨﮓﻫﺎي ﺿﻌﯿﻒ ﺑﺎ ﻣﯿﺎﻧﮕﯿﻦ ﻣﺮﺑﻊ ﺧﻄﺎي 0/0031203 و ﺿﺮﯾﺐ ﺗﻌﯿﯿﻦ 0/9903 ﺑﻪﻃﻮر ﻣﻮﻓﻘﯿﺖ آﻣﯿﺰي اﺳﺘﻔﺎده ﺷﻮد.
Keywords :
Harmony search algorithm , Uniaxial compressive strength , Weak rocks , Relevance vector regression , Cuckoo search algorithm
Journal title :
Journal of Mining and Environment