Other language title :
بررسي جامع از الگوريتم هاي فرا ابتكاري متعدد براي مسئله برنامه ريزي توليد بلند مدت معادن رو باز با در نظرگرفتن عدم قطعيت عيار
Title of article :
A Comprehensive Study of Several Meta-Heuristic Algorithms for Open- Pit Mine Production Scheduling Problem Considering Grade Uncertainty
Author/Authors :
Tolouei , K Department of Petroleum and Mining Engineering - South Tehran Branch - Islamic Azad University - Tehran, Iran , Moosavi , E Department of Petroleum and Mining Engineering - South Tehran Branch - Islamic Azad University - Tehran, Iran , Bangian Tabrizi , A.H Department of Petroleum and Mining Engineering - South Tehran Branch - Islamic Azad University - Tehran, Iran , Afzal, P Department of Petroleum and Mining Engineering - South Tehran Branch - Islamic Azad University - Tehran, Iran , Aghajani Bazzazi, A Department of Mining Engineering - University of Kashan - Kashan, Iran
Pages :
16
From page :
721
To page :
736
Abstract :
It is significant to discover a global optimization in the problems dealing with large dimensional scales to increase the quality of decision-making in the mining operation. It has been broadly confirmed that the long-term production scheduling (LTPS) problem performs a main role in mining projects to develop the performance regarding the obtainability of constraints, while maximizing the whole profits of the project in a specific period. There is a requirement for improving the scheduling methodologies to get a good solution since the production scheduling problems are non-deterministic polynomial-time hard. The current paper introduces the hybrid models so as to solve the LTPS problem under the condition of grade uncertainty with the contribution of Lagrangian relaxation (LR), particle swarm optimization (PSO), firefly algorithm (FA), and bat algorithm (BA). In fact, the LTPS problem is solved under the condition of grade uncertainty. It is proposed to use the LR technique on the LTPS problem and develop its performance, speeding up the convergence. Furthermore, PSO, FA, and BA are projected to bring up-to-date the Lagrangian multipliers. The consequences of the case study specifies that the LR method is more influential than the traditional linearization method to clarify the large-scale problem and make an acceptable solution. The results obtained point out that a better presentation is gained by LR–FA in comparison with LR-PSO, LR-BA, LR-Genetic Algorithm (GA), and traditional methods in terms of the summation net present value. Moreover, the CPU time by the LR-FA method is approximately 16.2% upper than the other methods.
Farsi abstract :
ﯾﺎﻓﺘﻦ ﯾﮏ ﺑﻬﯿﻨﻪ ﺳﺎزي ﺟﻬﺎﻧﯽ در ﻣ ﺴﺎﺋﻞ ﺑﺰرگ ﻣﻘﯿﺎس ﺑﺮاي اﻓﺰاﯾﺶ ﮐﯿﻔﯿﺖ ﺗ ﺼﻤﯿﻢﮔﯿﺮي در ﻋﻤﻠﯿﺎت ﻣﻌﺪﻧﮑﺎري، ﺣﺎﺋﺰ اﻫﻤﯿﺖ ا ﺳﺖ. ﻣ ﺴﺌﻠﻪ ﺑﺮﻧﺎﻣﻪرﯾﺰي ﺗﻮﻟﯿﺪ ﺑﻠﻨﺪ ﻣﺪت ﻧﻘﺶ ﮐﻠﯿﺪي را در ﭘﺮوژهﻫﺎي ﻣﻌﺪﻧﮑﺎري ﺟﻬﺖ اﻓﺰاﯾﺶ ﻋﻤﻠﮑﺮد ﻣﺮﺗﺒﻂ ﺑﺎ دﺳــﺘﯿﺎﺑﯽ ﺑﻪ ﻣﺤﺪودﯾﺖﻫﺎ اﯾﻔﺎ ﻣﯽﮐﻨﺪ و در ﻋﯿﻦ ﺣﺎل ﺳــﻮد ﮐﻞ ﭘﺮوژه را در ﯾﮏ دوره ﻣﻌﯿﻦ ﺑﻪ ﺣﺪاﮐﺜﺮ ﻣﯽرﺳــﺎﻧﺪ. ﺑﺮاي ﺑﺪﺳــﺖ آوردن راهﺣﻞ ﻣﻨﺎﺳــﺐ، ﺑﻪ ﺳــﺒﺐ اﯾﻨﮑﻪ ﻣﺴــﺎﺋﻞ ﺑﺮﻧﺎﻣﻪرﯾﺰي ﺗﻮﻟﯿﺪ، ﺑﺰرگ ﻣﻘﯿﺎس و ﭘﯿﭽﯿﺪه ﻫﺴــﺘﻨﺪ، روشﻫﺎي ﺑﺮﻧﺎﻣﻪرﯾﺰي ﻧﯿﺎزﻣﻨﺪ ﺑﻬﺒﻮد ﻫﺴــﺘﻨﺪ. در اﯾﻦ ﻣﻘﺎﻟﻪ، ﻣﺪل ﺗﺮﮐﯿﺒﯽ ﺟﻬﺖ ﺣﻞ ﻣﺴــﺌﻠﻪ ﺑﺮﻧﺎﻣﻪرﯾﺰي ﺗﻮﻟﯿﺪ ﺑﻠﻨﺪ ﻣﺪت ﺗﺤﺖ ﺷــﺮاﯾﻂ ﻋﺪم ﻗﻄﻌﯿﺖ ﻋﯿﺎر ﺑﺎ اﺳــﺘﻔﺎده از روش آزادﺳــﺎزي ﻻﮔﺮاﻧﮋي، ﺑﻬﯿﻨﻪ ﺳﺎزي ازدﺣﺎم ذرات، اﻟﮕﻮرﯾﺘﻢ ﮐﺮم ﺷﺐﺗﺎب و اﻟﮕﻮرﯾﺘﻢ ﺧﻔﺎش اراﺋﻪ ﻣﯽﮔﺮدد. ا ﺳﺘﻔﺎده از روش آزاد ﺳﺎزي ﻻﮔﺮاﻧﮋي ﺟﻬﺖ ﺗﻮ ﺳﻌﻪ ﻋﻤﻠﮑﺮد و ﺗ ﺴﺮﯾﻊ ﻫﻤﮕﺮاﯾﯽ ﻣﺴﺌﻠﻪ ﺑﺮﻧﺎﻣﻪرﯾﺰي ﺗﻮﻟﯿﺪ ﭘﯿﺸﻨﻬﺎد ﺷﺪه ا ﺳﺖ. ﻋﻼوه ﺑﺮ اﯾﻦ، اﻟﮕﻮرﯾﺘﻢﻫﺎي ﻓﺮااﺑﺘﮑﺎري ﺟﻬﺖ ﺑﻪروزرﺳﺎﻧﯽ ﺿﺮاﯾﺐ ﻻﮔﺮاﻧﮋ ﻣﻮرد اﺳﺘﻔﺎده ﻗﺮار ﮔﺮﻓﺘﻪاﻧﺪ. ﻧﺘﺎﯾﺞ ﻣﻄﺎﻟﻌﻪ ﻣﻮردي ﻧﺸﺎن ﻣﯽدﻫﺪ ﮐﻪ روش ﺗﺮﮐﯿﺒﯽ ﭘﯿﺸﻨﻬﺎدي ﮐﺎرآﯾﯽ ﺑﻬﺘﺮي ﻧﺴﺒﺖ ﺑﻪ روش ﺳﻨﺘﯽ، ﺑﺮاي ﺣﻞ ﻣ ﺴﺎﺋﻞ ﺑﺰرگ ﻣﻘﯿﺎس دارد و ﯾﮏ راهﺣﻞ ﻗﺎﺑﻞ ﻗﺒﻮل اراﺋﻪ ﻣﯽدﻫﺪ. ﻧﺘﺎﯾﺞ ﺑﺪﺳﺖ آﻣﺪه از روش ﺗﺮﮐﯿﺒﯽ آزادﺳﺎزي ﻻﮔﺮاﻧﮋي و اﻟﮕﻮرﯾﺘﻢ ﮐﺮم ﺷﺐﺗﺎب از ﻟﺤﺎظ ﻣﺠﻤﻮع ارزش ﺧﺎﻟﺺ ﻓﻌﻠﯽ ﻧﺴﺒﺖ ﺑﻪ ﺳﺎﯾﺮ روشﻫﺎ ﻧﺘﺎﯾﺞ ﻧﺰدﯾﮏ ﺑﻪ ﺑﻬﯿﻨﻪ را ﺗﻮﻟﯿﺪ ﻣﯽﮐﻨﺪ. ﻫﻤﭽﻨﯿﻦ، زﻣﺎن ﻣﺤﺎﺳﺒﺎﺗﯽ ﻣﺪل ﭘﯿﺸﻨﻬﺎدي ﺗﻘﺮﯾﺒﺎً % 16/2 ﺳﺮﯾﻊﺗﺮ از دﯾﮕﺮ روشﻫﺎ اﺳت
Keywords :
Open-pit mine , ongterm production scheduling , Meta-heuristics methods , Lagrangian relaxation , Grade uncertainty
Journal title :
Journal of Mining and Environment
Serial Year :
2020
Record number :
2529741
Link To Document :
بازگشت