Title of article :
Competitive hydrogen bonding in aspirin-aspirin and aspirin-leucine interactions
Author/Authors :
YURTSEVER, Zeynep Washington University - Department of Biology and Biomedical Sciences, USA , YURTSEVER, Zeynep Ko¸c University - Chemistry Department, TURKEY , ERMAN, Burak Ko¸c University - Chemical and Biological Engineering Department, TURKEY , YURTSEVER, Ersin Washington University - Department of Biology and Biomedical Sciences, USA
Abstract :
Aspirin-aspirin and aspirin-leucine interactions are studied by the density functional theory (DFT) and high level ab initio calculations with second order Moller-Plesset perturbation theory (MP2). The rotational isomers of aspirin are identified by their relative stability both in gaseous phase and in water using the polarizable continuum method (PCM). Local minima of aspirin monomers in water are found to be all highly populated compared to the gas phase behavior. Homodimers of aspirin form hydrogen bonds with bond energies of 10 kcal/mol. Weak hydrogen bonds utilizing phenyl and methyl groups are also found. The interaction between aspirin and leucine is stronger with relatively short bond lengths compared to homodimeric aspirin interactions. The potential energy surface has several minima with comparable stability. This study shows the significance of diverse bonding schemes, which are important for understanding complete interaction mechanisms of aspirin.
Keywords :
Competitive hydrogen bonding in aspirin , aspirin and aspirin , leucine interactions
Journal title :
Turkish Journal of Chemistry
Journal title :
Turkish Journal of Chemistry