Title of article :
Accelerating Application Identification with Two-Stage Matching and Pre-Classification
Author/Authors :
HE, Fei Tsinghua University - Research Institute of Information Technology - Department of Automation, China , XIANG, Fan Tsinghua University - Department of Automation, China , SHAO, Yiyang Tsinghua University - Department of Automation, China , XUE, Yibo Tsinghua University - Research Institute of Information Technology - Tsinghua National Lab for Information Science and Technology, China , LI, Jun Tsinghua University - Research Institute of Information Technology - Tsinghua National Lab for Information Science and Technology, China
Abstract :
Modern datacenter and enterprise networks require application identification to enable granular traffic control that either improves data transfer rates or ensures network security. Providing application visibility as a core network function is challenging due to its performance requirements, including high throughput, low memory usage, and high identification accuracy. This paper presents a payload-based application identification method using a signature matching engine utilizing characteristics of the application identification. The solution uses two-stage matching and pre-classification to simultaneously improve the throughput and reduce the memory. Compared to a state-of-the-art common regular expression engine, this matching engine achieves 38% memory use reduction and triples the throughput. In addition, the solution is orthogonal to most existing optimization techniques for regular expression matching, which means it can be leveraged to further increase the performance of other matching algorithms.
Keywords :
application identification , deep inspection , regular expression , traffic classification
Journal title :
Tsinghua Science and Technology
Journal title :
Tsinghua Science and Technology