Title of article :
The Connections Between Continued Fraction Representations of Units and Certain Hecke Groups
Author/Authors :
Sahin, R. Balikesir Universitesi - Fen-Edebiyat Fakultesi - Matematik Bolumu, Turkey , Ikikardes, S. Balikesir Universitesi - Fen-Edebiyat Fakultesi - Matematik Bolumu, Turkey , Koruoglu, O. Balikesir Universitesi - Necatibey Egitim Fakultesi - Ilkogretim Matematik Bolumu, Turkey , Cangul, I. N. Uludag Universitesi - Fen-Edebiyat Fakultesi - Matematik Bolumu, Turkey
Abstract :
Let λ = sqrt{d} where D is a square free integer such that D = m² +1 for m = 1, 3, 4, 5,... , or D = n² - 1 for n = 23, 4, 5,.... Also, let H(λ) be the Hecke group associated to λ. In this paper, we show that the units in H(λ) are infinite pure periodic λ-continued fraction for a certain set of integer D, and hence can not be cusp points.
Keywords :
Hecke group , Fuchsian group , continued fraction , cusp point
Journal title :
Bulletin of the Malaysian Mathematical Sciences Society
Journal title :
Bulletin of the Malaysian Mathematical Sciences Society