Title of article :
Application of a Numerical Method Using Radial Basis Functions to Nonlinear Partial Differential Equations
Author/Authors :
Uddin, Marjan University of Engineering and Technology, Pakistan , Haq, Sirajul Ghulam Ishaq Khan(GIK)Institute - Faculty of Engineering Sciences, Pakistan
From page :
77
To page :
93
Abstract :
In this paper, we propose a meshfree method for numerical solution of various classes of partial differential equations (PDEs), such as the Boussinesq system, Drinefel’d-Sokolov-Wilson equations, and Hirota-Satsuma coupled KdV system. The meshfree algorithm is based on scattered data interpolation along with approximating functions known as radial basis functions (RBFs). The meshfree technique does not require space discretization. A set of scattered nodes provided by initial data is used for solution of the problem. Accuracy of the method is estimated in terms of the error norms L2, L∞, number of nodes in the domain of influence, time step size, parameter dependent and parameter independent RBFs, the numerical validation for the above mentioned three types of PDEs is given to check performance of the new approach.
Keywords :
RBFs , Partial differential equations , Boussinesq system , Drinefel’d , Sokolov , Wilson equations , Hirota , Satsuma coupled KdV system , Multiquadric (MQ), Quintics
Journal title :
Selcuk Journal of Applied Mathematics
Journal title :
Selcuk Journal of Applied Mathematics
Record number :
2551941
Link To Document :
بازگشت