Title of article :
EFFECTS OF VISCOUS DISSIPATION AND VARIABLE PROPERTIES ON NANOFLUIDS FLOW IN TWO DIMENSIONAL MICROCHANNELS
Author/Authors :
Ramiar, A. babol noshirvani university of technology - Department of Mechanical Engineering, بابل, ايران , Ranjbar, A.A. babol noshirvani university of technology - Department of Mechanical Engineering, بابل, ايران
Abstract :
Laminar two dimensional forced convective heat transfer of AI2O3 -water nanofluid in a horizontal microchannel has been studied numerically, considering axial conduction, viscous dissipation and variable properties effects. The existing criteria in the literature for considering viscous dissipation in energy equation are compared for different cases and the most proper one is applied for the rest of the paper. The results showed that nanoparticles enhance heat transfer characteristics of the channel and on contrast, viscous dissipation causes the Nusselt number and friction factor to decrease. The viscous dissipation effect may be emphasized by increasing Reynolds number and decreased by raising the exerted heat flux. Also, it was found that there is a critical Reynolds number below which the average Nusselt number of the nanofluid changes unusually with Reynolds number as a result of variable properties effect.
Keywords :
Nanofluids , Heat Transfer Enhancement , Nusselt Number , Critical Reynolds Number
Journal title :
International Journal of Engineering
Journal title :
International Journal of Engineering