Title of article :
FEASIBILITY OF GLYCERIN/Al2O3 NANOFLUID FOR AUTOMOTIVE COOLING APPLICATIONS
Author/Authors :
Sundari, Kondru Gnana Department of Mechanical Engineering - Karunya Institute of Technology and Sciences, Coimbatore, India , Asirvatham, Lazarus Godson Department of Mechanical Engineering - Karunya Institute of Technology and Sciences, Coimbatore, India , Marshal S, Joseph John Department of Mechanical Engineering - Karunya Institute of Technology and Sciences, Coimbatore, India , Ninolin, Emerald Department of Mechanical Engineering - Karunya Institute of Technology and Sciences, Coimbatore, India , B, Surekha Department of Mechanical Engineering - Kalinga Institute of Industrial Technology, Bhubaneswar, India
Pages :
14
From page :
619
To page :
632
Abstract :
In this paper, the feasibility of glycerin/Al2O3 nanofluid for automotive cooling applications is experimentally studied. The test setup includes an engine model and a car radiator and the heat transfer characteristics at required operating conditions are analyzed under laminar flow conditions. Three different concentrations of nanofluids such as 0.05, 0.1 and 0.15 vol. % are used and the enhancement in the heat transfer coefficient is 62% when 0.15% volume concentration of nanoparticles are added to the base fluid (glycerin) at a constant heat flux of 6919 W/m2 . The effectiveness of the radiator cooling system increases along with negligible increase in pumping power with increase of volume concentration. The addition of nanoparticles in the base fluid enhances the absorption capacity of the radiator coolant leading to the increase in the effectiveness. Results have also indicated that the nanofluids are mainly dependent on particle concentration, flow rates, and temperature. Hence, it is suggested that nanoparticle suspended coolants are promising and efficient for automotive cooling applications.
Keywords :
Nanofluid , Glycerin , Radiator , Convective Heat Transfer Coefficient , Automotive Cooling
Journal title :
Journal of Thermal Engineering
Serial Year :
2020
Full Text URL :
Record number :
2594213
Link To Document :
بازگشت