Title of article :
A GG NOT FH SEMISTAR OPERATION ON MONOIDS
Author/Authors :
Ryuki Matsuda Hori, Mito Ibaraki, JAPAN
Pages :
6
From page :
39
To page :
44
Abstract :
Let S be a g-monoid with quotient group q(S). Let F( ¯ S) (resp., F(S), f(S)) be the S-submodules of q(S) (resp., the fractional ideals of S, the finitely generated fractional ideals of S). Briefly, set f := f(S), g := F(S), h := F( ¯ S), and let {x, y} be a subset of the set {f, g, h} of symbols. For a semistar operation ? on S, if (E +E1) ? = (E +E2) ? implies E1 ? = E2 ? for every E ∈ x and every E1, E2 ∈ y, then ? is called xy-cancellative. In this paper, we prove that a gg-cancellative semistar operation need not be fh-cancellative
Keywords :
Semistar operation , monoid
Journal title :
International Electronic Journal of Algebra
Serial Year :
2017
Full Text URL :
Record number :
2600097
Link To Document :
بازگشت