Title of article :
Dense Trajectories and DHOG for Classification of Viewpoints from Echocardiogram Videos
Author/Authors :
Huang, Liqin School of Physics and Information Engineering - Fuzhou University - Fuzhou, China , Zhang, Xiangyu School of Physics and Information Engineering - Fuzhou University - Fuzhou, China , Li, Wei School of Physics and Information Engineering - Fuzhou University - Fuzhou, China
Pages :
8
From page :
1
To page :
8
Abstract :
In echo-cardiac clinical computer-aided diagnosis, an important step is to automatically classify echocardiography videos from different angles and different regions. We propose a kind of echocardiography video classification algorithm based on the dense trajectory and difference histograms of oriented gradients (DHOG). First, we use the dense grid method to describe feature characteristics in each frame of echocardiography sequence and then track these feature points by applying the dense optical flow. In order to overcome the influence of the rapid and irregular movement of echocardiography videos and get more robust tracking results, we also design a trajectory description algorithm which uses the derivative of the optical flow to obtain the motion trajectory information and associates the different characteristics (e.g., the trajectory shape, DHOG, HOF, and MBH) with embedded structural information of the spatiotemporal pyramid. To avoid “dimension disaster,” we apply Fisher’s vector to reduce the dimension of feature description followed by the SVM linear classifier to improve the final classification result. The average accuracy of echocardiography video classification is 77.12% for all eight viewpoints and 100% for three primary viewpoints.
Keywords :
DHOG , Classification , Echocardiogram
Journal title :
Computational and Mathematical Methods in Medicine
Serial Year :
2016
Full Text URL :
Record number :
2607350
Link To Document :
بازگشت