Title of article :
An Efficient Platform for the Automatic Extraction of Patterns in Native Code
Author/Authors :
Escalada, Javier Computer Science Department - University of Oviedo, Calvo Sotelo s/n,Spain , Ortin, Francisco Computer Science Department, University of Oviedo, Calvo Sotelo s/n, Spain , Scully, Ted Cork Institute of Technology - Computer Science Department - Rossa Avenue, Bishopstown, Cork, Ireland
Pages :
17
From page :
1
To page :
17
Abstract :
Different software tools, such as decompilers, code quality analyzers, recognizers of packed executable files, authorship analyzers, and malware detectors, search for patterns in binary code. The use of machine learning algorithms, trained with programs taken from the huge number of applications in the existing open source code repositories, allows finding patterns not detected with the manual approach. To this end, we have created a versatile platform for the automatic extraction of patterns from native code, capable of processing big binary files. Its implementation has been parallelized, providing important runtime performance benefits for multicore architectures. Compared to the single-processor execution, the average performance improvement obtained with the best configuration is 3.5 factors over the maximum theoretical gain of 4 factors.
Keywords :
Native Code , An Efficient Platform , Automatic Extraction of Patterns
Journal title :
Scientific Programming
Serial Year :
2017
Full Text URL :
Record number :
2608130
Link To Document :
بازگشت