Title of article :
An updat‎e on Statistical Boosting in Biomedicine
Author/Authors :
Mayr, Andreas Universitat Erlangen-Nurnberg (FAU) - Erlangen, Germany , Hofner, Benjamin Paul-Ehrlich-Institut - Langen, Germany , Waldmann, Elisabeth Universitat Erlangen-Nurnberg (FAU) - Erlangen, Germany , Hepp, Tobias Universitat Erlangen-Nurnberg (FAU) - Erlangen, Germany , Meyer, Sebastian Universitat Erlangen-Nurnberg (FAU) - Erlangen, Germany , Gefeller, Olaf Universitat Erlangen-Nurnberg (FAU) - Erlangen, Germany
Pages :
12
From page :
1
To page :
12
Abstract :
Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates.They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.
Keywords :
updat‎e , Boosting , Biomedicine
Journal title :
Computational and Mathematical Methods in Medicine
Serial Year :
2017
Full Text URL :
Record number :
2608220
Link To Document :
بازگشت