Author/Authors :
Martınez-Lazaro, Celia Facultad de Matematicas - Universidad Auto´noma de Guerrero Chilpancingo - Av. Lazaro Cardenas S/N, Cd. Universitaria - Chilpancingo - Guerrero, Mexico , Taneco-Hernandez, Marco Antonio Facultad de Matematicas - Universidad Auto´noma de Guerrero Chilpancingo - Av. Lazaro Cardenas S/N, Cd. Universitaria - Chilpancingo - Guerrero, Mexico , Reyes-Carreto, Ramon Facultad de Matematicas - Universidad Auto´noma de Guerrero Chilpancingo - Av. Lazaro Cardenas S/N, Cd. Universitaria - Chilpancingo - Guerrero, Mexico , Vargas-De-Leon, Cruz Escuela Superior de Medicina - Instituto Politecnico Nacional - Plan de San Luis y Dıaz Miron S/N - Col. Casco de Santo Tomas - Del. Miguel Hidalgo - Ciudad de Mexico, Mexico
Abstract :
The estimation of parameters in biomathematical models is useful to characterize quantitatively the dynamics of biological
processes. In this paper, we consider some systems of ordinary differential equations (ODEs) modelling the viral dynamics in a cell
culture. These models incorporate the loss of viral particles due to the absorption into target cells. We estimated the parameters of
models by least-squares minimization between numerical solution of the system and experimental data of cell cultures. We
derived a first integral or conserved quantity, and we proved the use of experimental data in order to test the conservation law. The
systems have nonhyperbolic equilibrium points, and the conditions for their stability are obtained by using a Lyapunov function.
We complemented these theoretical results with some numerical simulations.
Keywords :
Dynamics , Vitro , Quantity , CD4+ T