Title of article :
Trichoscopy of Alopecia Areata: Hair Loss Feature Extraction and Computation Using Grid Line Selection and Eigenvalue
Author/Authors :
Seo, Sunyong Department of Media - Graduate School of Soongsil University - Sangdo-ro - Dongjak-gu, Republic of Korea , Park, Jinho Global School of Media - Soongsil University - Sangdo-ro - Dongjak-gu, Republic of Korea
Pages :
8
From page :
1
To page :
8
Abstract :
Recently, the hair loss population, alopecia areata patients, is increasing due to various unconfirmed reasons such as environmental pollution and irregular eating habits. In this paper, we introduce an algorithm for preventing hair loss and scalp self-diagnosis by extracting HLF (hair loss feature) based on the scalp image using a microscope that can be mounted on a smart device. We extract the HLF by combining a scalp image taken from the microscope using grid line selection and eigenvalue. First, we preprocess the photographed scalp images using image processing to adjust the contrast of microscopy input and minimize the light reflection. Second, HLF is extracted through each distinct algorithm to determine the progress degree of hair loss based on the preprocessed scalp image. We define HLF as the number of hair, hair follicles, and thickness of hair that integrate broken hairs, short vellus hairs, and tapering hairs.
Keywords :
Trichoscopy , HLF , FPHL
Journal title :
Computational and Mathematical Methods in Medicine
Serial Year :
2020
Full Text URL :
Record number :
2613111
Link To Document :
بازگشت