Title of article :
Mathematical Model for Optimal Control of Soil-Transmitted Helminth Infection
Author/Authors :
Lambura, Aristide G. School of Computational and Communication Science and Engineering - The Nelson Mandela African - Institution of Science and Technology - Arusha, Tanzania , Mwanga, Gasper G. Department of Physcics - Mathematics and Informatics - University of Dares Salaam - Dares Salaam, Tanzania , Luboobi, Livingstone School of Computational and Communication Science and Engineering - The Nelson Mandela African - Institution of Science and Technology - Arusha, Tanzania , Kuznetsov, Dmitry School of Computational and Communication Science and Engineering - The Nelson Mandela African - Institution of Science and Technology - Arusha, Tanzania
Pages :
14
From page :
1
To page :
14
Abstract :
In this paper, we study the dynamics of soil-transmitted helminth infection. We formulate and analyse a deterministic compartmental model using nonlinear differential equations. The basic reproduction number is obtained and both disease-free and endemic equilibrium points are shown to be asymptotically stable under given threshold conditions. The model may exhibit backward bifurcation for some parameter values, and the sensitivity indices of the basic reproduction number with respect to the parameters are determined. We extend the model to include control measures for eradication of the infection from the community. Pontryagian’s maximum principle is used to formulate the optimal control problem using three control strategies, namely, health education through provision of educational materials, educational messages to improve the awareness of the susceptible population, and treatment by mass drug administration that target the entire population(preschool- and school-aged children) and sanitation through provision of clean water and personal hygiene. Numerical simulations were done using MATLAB and graphical results are displayed. The cost effectiveness of the control measures were done using incremental cost-effective ratio, and results reveal that the combination of health education and sanitation is the best strategy to combat the helminth infection. Therefore, in order to completely eradicate soil-transmitted helminths, we advise investment efforts on health education and sanitation controls.
Keywords :
Soil-Transmitted , Optimal , MATLAB , dynamics
Journal title :
Computational and Mathematical Methods in Medicine
Serial Year :
2020
Full Text URL :
Record number :
2613398
Link To Document :
بازگشت