Title of article :
Reinforcement Learning in Neurocritical and Neurosurgical Care: Principles and Possible Applications
Author/Authors :
Liu, Ying Lhorong People’s Hospital - Tibet, China , Qiao, Nidan Department of Neurosurgery - Huashan Hospital - Shanghai Medical School - Fudan University - Shanghai, China , Altinel, Yuksel Harvard Medical School - Boston, USA
Pages :
5
From page :
1
To page :
5
Abstract :
Dynamic decision-making was essential in the clinical care of surgical patients. Reinforcement learning (RL) algorithm is a computational method to find sequential optimal decisions among multiple suboptimal options. This review is aimed at introducing RL’s basic concepts, including three basic components: the state, the action, and the reward. Most medical studies using reinforcement learning methods were trained on a fixed observational dataset. This paper also reviews the literature of existing practical applications using reinforcement learning methods, which can be further categorized as a statistical RL study and a computational RL study. The review proposes several potential aspects where reinforcement learning can be applied in neurocritical and neurosurgical care. These include sequential treatment strategies of intracranial tumors and traumatic brain injury and intraoperative endoscope motion control. Several limitations of reinforcement learning are representations of basic components, the positivity violation, and validation methods.
Keywords :
Possible , Principles , Neurocritical , DTR
Journal title :
Computational and Mathematical Methods in Medicine
Serial Year :
2021
Full Text URL :
Record number :
2615979
Link To Document :
بازگشت