Other language title :
حل معادله وازيچك با موجك براوني و انتگرال ايتو
Title of article :
Numerical Solution of Vasicek Equation by Using Brownian Wavelets and Multiple Ito-Integral
Author/Authors :
Mahmoudi, M Department of Mathematics - University of Qom, Qom, Iran , Ahmad Ghondaghsaz, D Department of Mathematics - University of Qom, Qom, Iran
Pages :
14
From page :
67
To page :
80
Abstract :
In this paper, we present a new approach to solving stochastic differential equations and the Vasicek equation by using Brownian wavelets and multiple Ito-integral. Firstly, the calculation of the multiple Ito-integral based on the structure of Brownian motion is presented and the error of Ito-integrate computation is minimized under this condition. Then, the Brownian wavelets 1D and 3D based on coefficients Brownian motion are introduced. After that, a system of linear and nonlinear equations of coefficients Brownian motion is obtained such that by solving this system the approximate solution of the Vasicek equation is obtained. In the last section, some numerical examples are given.
Farsi abstract :
در اين مقاله، يك روش جديد براي حل معادله ديفرانسيل تصادفي ارائه مي دهيم و معادله وازيچك را حل مي كنيم. در ابتدا، نحوي محاسبه انتگرال هاي چندگانه ايتو بر اساس ساختار حركت براوني ارائه شده به طوري كه خطاي محاسباتي در آن به حداقل مي رسد. سپس، موجك هاي براوني يك بعدي و چند بندي بر اساس حركت براوني معرفي مي شوند. پس از آن، سيستم معادلات خطي و غيرخطي بر اساس اين موجك هاي براوني بدست مي آيد كه با حل اين سيستم، معادله وازيچك حل مي شود. در آخر چند مثال عددي آورده شده است.
Keywords :
Ito-integral , Brownian wavelets , Brownian motion , Vasicek equation , Stochastic differential equation
Journal title :
Control and Optimization in Applied Mathematics
Serial Year :
2020
Record number :
2629194
Link To Document :
بازگشت