Title of article :
How to control confounding effects by statistical analysis
Author/Authors :
pourhoseingholi, m.a. shahid beheshti university of medical sciences, تهران, ايران , baghestani, a.r. department of mathematic, islamic azad university, ايران , vahedi, m. department of epidemiology and biostatistics, school of public health, tehran university of medical sciences, ايران
From page :
79
To page :
83
Abstract :
A Confounder is a variable whose presence affects the variables being studied so that the results do not reflect the actual relationship. There are various ways to exclude or control confounding variables including Randomization, Restriction and Matching. But all these methods are applicable at the time of study design. When experimental designs are premature, impractical, or impossible, researchers must rely on statistical methods to adjust for potentially confounding effects. These Statistical models (especially regression models) are flexible to eliminate the effects of confounders. © 2012 RIGLD, Research Institute for Gastroenterology and Liver Diseases.
Keywords :
Adjustment , Confounders , Statistical models
Journal title :
Gastroenterology and Hepatology From Bed to Bench
Journal title :
Gastroenterology and Hepatology From Bed to Bench
Record number :
2648102
Link To Document :
بازگشت