Title of article :
A GENERALIZATION OF REDUCED RINGS
Author/Authors :
Kose, Handan Ahi Evran University - Department of Mathematics, Turkey , Ungor, Burcu Ankara Üniversitesi - Department of Mathematics, Turkey , Halicioglu, Sait Ankara Üniversitesi - Department of Mathematics, Turkey
Abstract :
Let R be a ring with identity. We introduce a class of rings whichis a generalization of reduced rings. A ring R is called central rigid if for any a, b ∈R, a^2 b = 0 implies ab belongs to the center of R. Since every reduced ring is central rigid, we study sufficient conditions for central rigid rings to be reduced. We prove that some results of reduced rings can be extended to central rigid rings for this general setting, in particular, it is shown that every reduced ring is central rigid, every central rigid ring is central reversible, central semicommutative, 2-primal, abelian and so directly finite.
Keywords :
Reduced rings , Central rigid rings , Central reversible rings , Central semi , commutative rings , Abelian rings.
Journal title :
Hacettepe Journal Of Mathematics and Statistics
Journal title :
Hacettepe Journal Of Mathematics and Statistics