Title of article :
Module cohomology group of inverse semigroup algebras
Author/Authors :
NASRABADI, E. university of birjand - Department of Mathematics, بيرجند, ايران , POURABBAS, A. amirkabir university of technology - Faculty of Mathematics and Computer Science, تهران, ايران
Abstract :
Let S be an inverse semigroup and let E be its sub- semigroup of idempotents. In this paper we dene the n-th mod- ule cohomology group of Banach algebras and show that the rst module cohomology group H1 ℓ1(E)(ℓ1(S); ℓ1(S)(n)) is zero, for ev- ery odd n 2 N. Next, for a Cli ord semigroup S we show that H2 ℓ1(E)(ℓ1(S); ℓ1(S)(n)) is a Banach space, for every odd n 2 N.
Keywords :
Module Amenability , inverse semigroup algebra , module cohomology group
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society