Title of article :
Extreme Learning Machine Based Pattern Classifiers for Symbolic Interval Data
Author/Authors :
Emami, N Department of Computer Science - Faculty of Engineering and Basic Sciences - Kosar University of Bojnord, Iran , Kuchaki Rafsanjani, M Department of Computer Science - Faculty of Mathematics and Computer - Shahid Bahonar University of Kerman - Kerman, Iran
Abstract :
Interval data are usually applied where inaccuracy and variability must be considered. This paper presents a learning method for Interval Extreme Learning Machine (IELM) in classification. IELM has two steps similar to well known ELM. At first weights connecting the input and the hidden layers are generated randomly and in the second step, ELM uses the Moore–Penrose generalized inverse to determine the weights connecting the hidden and output layers. In order to use Moore–Penrose generalized inverse for determining second layer weights in IELM, this paper proposes four classification methods to handle symbolic interval data based on ELM. The first one uses a midpoint of intervals for each feature value then it applies a classic ELM. The second one considers each feature value as a pair of quantitative features and implements a conjoint for classic extreme learning machine. The third one represents interval features by their vertices and performs a classic extreme learning machine as well. The fourth one takes each interval as a pair of quantitative features after that two separated classic extreme learning machines are performed on these features and combines the results accordingly. Algorithms are tested on the synthetic and real datasets. A synthetic dataset is applied to determine the number of hidden layer nodes in an IELM. The classification error rate is considered as a comparison criterion. The error rate obtained for each proposed methods is 19.167%, 15% , 6.536% and 18.333% respectively. Experiments demonstrate the usefulness of these classifiers to classify symbolic interval data.
Farsi abstract :
دادهﻫﺎي ﻓﺎﺻﻠﻪاي ﻣﻌﻤﻮﻻً در ﻣﻮﻗﻌ ﯿﺖﻫﺎﯾﯽ ﻣﻮرد اﺳﺘﻔﺎده ﻗﺮار ﻣﯽﮔ ﯿﺮﻧﺪ ﮐﻪ ﻋﺪم ﺻﺤﺖ و ﺗﻐﯿﯿﺮﭘﺬﯾﺮي وﺟﻮد دارد. در اﯾﻦ ﻣﻘﺎﻟﻪ ﯾﺎدﮔﯿﺮي ﺷﺒﮑﻪ ﻋﺼﺒﯽ ELM ﺑﺮاي ﻃﺒﻘﻪﺑﻨﺪي دادهﻫﺎي ﺑﺎزهاي اراﺋﻪ ﺷﺪه اﺳﺖ. IELM ﻣﺎﻧﻨﺪ ELM، دو ﻣﺮﺣﻠﻪ دارد. در ﻣﺮﺣﻠﻪ اول ، وزنﻫﺎي اﺗﺼﺎل ﻻﯾﻪ ورودي و ﻻﯾﻪ ﭘﻨﻬﺎن ﺑﻪ ﻃﻮر ﺗﺼﺎدﻓﯽ ﺗﻮﻟﯿﺪ ﻣﯽﺷﻮﻧﺪ و در ﻣﺮﺣﻠﻪ دوم، ELM ﺑﺮاي ﺗﻌ ﯿﯿﻦ وزنﻫﺎي ﺑﯿﻦ ﻻﯾﻪ ﭘﻨﻬﺎن و ﻻﯾﻪ ﺧﺮوﺟﯽ ﺑﻪ ﮐﻤﮏ ﺷﺒﻪ ﻣﻌﮑﻮس، از روش Moore–Penrose اﺳﺘﻔﺎده ﻣﯽﮐﻨﺪ. در اﯾﻦ ﻣﻘﺎﻟﻪ ﭼﻬﺎر روش ﻃﺒﻘﻪﺑﻨﺪي ﺑﺮاي ﻣﺪﯾﺮﯾﺖ دادهﻫﺎي ﻓﺎﺻﻠﻪاي ﻣﺒﺘﻨﯽ ﺑﺮ ﺷﺒﮑﻪ ﻋﺼﺒﯽ ELM ﭘﯿﺸﻨﻬﺎد ﺷﺪه اﺳﺖ. ﻣﻮرد اول از ﯾﮏ ﻧﻘﻄﻪ ﻣ ﯿﺎﻧﯽ ﻓﻮاﺻﻞ ﺑﺮاي ﻫﺮ ﻣﻘﺪار وﯾﮋﮔﯽ اﺳﺘﻔﺎده ﻣﯽﮐﻨﺪ ﺳﭙﺲ ﺷﺒﮑﻪ ﻋﺼﺒﯽ ELM ﮐﻼﺳﯿﮏ ﻃﺒﻘﻪﺑﻨﺪي را اﻧﺠﺎم ﻣﯽدﻫﺪ. ﻣﻮرد دوم ﻫﺮ ﻣﻘﺪار وﯾﮋﮔﯽ را ﺑﻪ ﻋﻨﻮان ﯾﮏ ﺟﻔﺖ وﯾﮋﮔﯽ ﮐﻤﯽ در ﻧﻈﺮ ﻣﯽﮔﯿﺮد و از ﯾﮏ ﺷﺒﮑﻪ ﻋﺼﺒﯽ ELM ﮐﻼﺳﯿﮏ ﺑﺮاي ﻃﺒﻘﻪﺑﻨﺪي اﺳﺘﻔﺎده ﻣﯽﮐﻨﺪ. ﻣﻮرد ﺳﻮم از ﻃﺮﯾﻖ رﺋﻮس آن وﯾﮋﮔﯽﻫﺎي ﻓﺎﺻﻠﻪ را ﻧﺸﺎن ﻣﯽدﻫﺪ و ﻫﻤﭽﻨﯿﻦ ﯾﮏ ﺷﺒﮑﻪ ﻋﺼﺒﯽ ELM ﮐﻼﺳﯿﮏ ﺑﺮاي ﻃﺒﻘﻪﺑﻨﺪي ﺑﮑﺎر ﻣﯽرود. ﻣﻮرد ﭼﻬﺎرم ﻫﺮ ﺑﺎزه را ﺑﻪ ﻋﻨﻮان ﯾﮏ ﺟﻔﺖ و ﯾﮋﮔﯽ ﮐﻤﯽ در ﻧﻈﺮ ﻣﯽﮔ ﯿﺮد، ﺑﻌﺪ از آن دو ﺷﺒﮑﻪ ﻋﺼﺒﯽ ELM ﺟﺪاﮔﺎﻧﻪ ﺑﺮ اﺳﺎس ﺣﺪ ﺑﺎﻻ و ﺣﺪ ﭘﺎﯾﯿﻦ آﻣﻮزش ﻣﯽﺑﯿﻨﻨﺪ و ﺳﭙﺲ ﻧﺘﺎﯾﺞ را ﺑﻪ ﻃﻮر ﻣﻨﺎﺳﺐ ﺗﺮﮐﯿﺐ ﻣﯽﮐﻨﺪ. اﻟﮕﻮرﯾﺘﻢﻫﺎ روي ﻣﺠﻤﻮﻋﻪ دادهﻫﺎي ﻣﺼﻨﻮﻋﯽ و واﻗﻌ ﯽ آزﻣﺎﯾﺶ ﺷﺪهاﻧﺪ. ﻣﺠﻤﻮﻋﻪ دادهﻫﺎي ﻣﺼﻨﻮﻋﯽ ﺑﺮاي ﺗﻌ ﯿ ﯿﻦ ﺗﻌﺪاد ﮔﺮهﻫﺎي ﻻﯾﻪ ﭘﻨﻬﺎن در ﺷﺒﮑﻪ ﻋﺼﺒﯽ ELM اﻋﻤﺎل ﻣﯽﺷﻮد. ﻣﯿﺰان ﺧﻄﺎي ﻃﺒﻘﻪﺑﻨﺪي ﺑﻪ ﻋﻨﻮان ﻣﻌ ﯿﺎر ﻣﻘﺎﯾﺴﻪ در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ. ﻣﯿﺰان ﺧﻄﺎي ﺑﻪ دﺳﺖ آﻣﺪه ﺑﺮاي ﻫﺮ ﭼﻬﺎر روش ﭘﯿﺸﻨﻬﺎدي ﺑﻪ ﺗﺮﺗﯿ ﺐ 19.167٪ ، 15٪ ، 6.536 و 18.333 اﺳﺖ. آزﻣﺎﯾﺶ ﻫﺎ ﺳﻮدﻣﻨﺪي اﯾ ﻦ ﻃﺒﻘﻪﺑﻨﺪﻫﺎ را ﺑﺮاي ﻃﺒﻘﻪﺑﻨﺪي دادهﻫﺎي ﺑﺎزهاي ﻧﺸﺎن ﻣﯽدﻫﺪ.
Keywords :
Extreme learning machine , Classification , Interval Data , Data Analysis
Journal title :
International Journal of Engineering