Title of article :
An Efficient Approach for Edge Detection Technique using Kalman Filter with Artificial Neural Network
Author/Authors :
Siddharth, D Department of CSE - Rama University - Kanpur, India , Saini, D.K.J Department of Computer and Information Sciences - Himalayan School of Science and Technology Swami Rama Himalayan University (SRHU) Jolly Grant Dehradun , Singh, P Department of CSE - Rama University - Kanpur, India
Abstract :
Edge identification is a technique for recognizing and detecting sharper breaks in an image. The halt is caused by a rapid change in the value of the pixel force dark level. Convoluting the picture with an administrator (Two-Directional channel) that is set to be noise sensitive is the standard approach for edge location. Edge finder is a method for locating precisely adjusted intensity esteem alterations that incorporate many significant neighborhoods image preparation methods. Edge recognition is a fundamental method in a wide range of image processing applications, including movement analysis, design identification, object recognition, clinical picture creation, and so on. It's recently shown up in a variety of edge detection systems, demonstrating both the advantages and disadvantages of these computations. The Kalman Filter with ANN method has two benefits that make it suitable for dealing with improvement issues: quicker merging and lower calculation rates. In this study, The ANN method was used to improve object localization accuracy. Kalman filtering is used to object coordinates acquired using the ANN method. Using ANN + Kalman Filtering increases localization accuracy and lowers localization error distances, according to the findings.
Farsi abstract :
ﺗﺸﺨﯿﺺ ﻟﺒﻪ ﯾﮏ ﺗﮑﻨﯿﮏ ﺑﺮاي ﺗﺸﺨﯿﺺ ﺷﮑﺴﺘﮕﯽ ﻫﺎي واﺿﺢ ﺗﺮ در ﯾﮏ ﺗﺼﻮﯾﺮ اﺳﺖ. ﺗﻮﻗﻒ ﻧﺎﺷﯽ از ﺗﻐﯿﯿﺮ ﺳﺮﯾﻊ ﻣﻘﺪار ﺳﻄﺢ ﺗﺎرﯾﮏ ﻧﯿﺮوي ﭘﯿﮑﺴﻞ اﺳﺖ. ﻣﺘﺪاول ﮐﺮدن ﺗﺼﻮﯾﺮ ﺑﺎ ﯾﮏ ﻣﺪﯾﺮ )ﮐﺎﻧﺎل د ﺟﻬﺘﻪ( ﮐﻪ ﺑﻪ ﻧﻮﯾﺰ ﺣﺴﺎس اﺳﺖ روﯾﮑﺮد اﺳﺘﺎﻧﺪارد ﺑﺮاي ﻣﮑﺎن ﻟﻮﺑﻪ اﺳﺖ. Edge Finder روﺷﯽ ﺑﺮاي ﻣﮑﺎن ﯾﺎﺑﯽ ﺗﻐﯿﯿﺮات ﺷﺪت و ﺷﺪت ﺗﻨﻈﯿﻢ ﺷﺪه اﺳﺖ ﮐﻪ ﺑﺴﯿﺎري از روﺷﻬﺎي آﻣﺎده ﺳﺎزي ﺗﺼﻮﯾﺮ در ﻣﺤﻠﻪ ﻫﺎي ﻣﻬﻢ را ﺷﺎﻣﻞ ﻣﯽ ﺷﻮد. ﺗﺸﺨﯿﺺ ﻟﺒﻪ ﯾﮏ روش اﺳﺎﺳﯽ در ﻃﯿﻒ ﮔﺴﺘﺮده اي از ﺑﺮﻧﺎﻣﻪ ﻫﺎي ﭘﺮدازش ﺗﺼﻮﯾﺮ از ﺟﻤﻠﻪ ﺗﺠﺰﯾﻪ و ﺗﺤﻠﯿﻞ ﺣﺮﮐﺖ ، ﺷﻨﺎﺳﺎﯾﯽ ﻃﺮاﺣﯽ ، ﺗﺸﺨﯿﺺ اﺷﯿﺎء ، اﯾﺠﺎد ﺗﺼﻮﯾﺮ ﺑﺎﻟﯿﻨﯽ و ﻏﯿﺮه اﺳﺖ. اﺧﯿﺮاً در اﻧﻮاع ﺳﯿﺴﺘﻢ ﻫﺎي ﺗﺸﺨﯿﺺ ﻟﺒﻪ ﻧﺸﺎن داده ﺷﺪه اﺳﺖ ﮐﻪ ﻣﺰاﯾﺎ و ﻣﻌﺎﯾﺐ اﯾﻦ ﻣﺤﺎﺳﺒﺎت را ﻧﺸﺎن ﻣﯽ دﻫﺪ. ﻓﯿﻠﺘﺮ ﮐﺎﻟﻤﻦ ﺑﺎ روش ANNداراي دو ﻣﺰﯾﺖ اﺳﺖ ﮐﻪ آن را ﺑﺮاي ﻣﻘﺎﺑﻠﻪ ﺑﺎ ﻣﺴﺎﺋﻞ ﺑﻬﺒﻮد ﻣﻨﺎﺳﺐ ﻣﯽ ﮐﻨﺪ: ادﻏﺎم ﺳﺮﯾﻌﺘﺮ و ﻧﺮخ ﻣﺤﺎﺳﺒﻪ ﮐﻤﺘﺮ. در اﯾﻦ ﻣﻄﺎﻟﻌﻪ ، از روش ANNﺑﺮاي ﺑﻬﺒﻮد دﻗﺖ ﻣﺤﻠﯽ ﺳﺎزي ﺷﯽ اﺳﺘﻔﺎده ﺷﺪ. ﻓﯿﻠﺘﺮﯾﻨﮓ ﮐﺎﻟﻤﻦ ﺑﺮاي ﺷﯽء ﻣﺨﺘﺼﺎت ﺑﻪ دﺳﺖ آﻣﺪه ﺑﺎ اﺳﺘﻔﺎده از روش ANNاﺳﺘﻔﺎده ﻣﯽ ﺷﻮد. ﺑﺮ اﺳﺎس ﯾﺎﻓﺘﻪ ﻫﺎ ، اﺳﺘﻔﺎده از ﻓﯿﻠﺘﺮ ANN + Kalman دﻗﺖ ﻣﺤﻠﯽ ﺳﺎزي را اﻓﺰاﯾﺶ ﻣﯽ دﻫﺪ و ﻓﺎﺻﻠﻪ ﺧﻄﺎﻫﺎي ﻣﺤﻠﯽ ﺳﺎزي را ﮐﺎﻫﺶ ﻣﯽ دﻫﺪ.
Keywords :
Kalman filter algorithm , Edge detection filter , Grey level image , Artificial Neural Network
Journal title :
International Journal of Engineering