Author/Authors :
Sheikhi, Sobhan Skolkovo Institute of Science and Technology, Moscow, RUSSIA
Abstract :
The conventional models utilized to study flow behavior in a Non-Condensate
gas reservoir did not consider the effects of gas slippage and different outer boundary conditions.
For gas wells with a constant production flow rate in a bounded oil or gas reservoir, commonly, the outer
boundary conditions are infinite boundary conditions or zero flux. In this study, the dimensionless
pseudo pressure and dimensionless derivative of pseudo pressure in the presence of 4 different outer
boundary conditions (infinite reservoir, constant pressure, exponential, and power-law) besides
effects of gas slippage, wellbore storage, and skin factor are analyzed. To do this, the dimensionless
pseudo pressure partial differential equation of radial flow was derived from the combination of continuity
equation with Darcy’s law, the equation of state, compressibility equation, and dimensionless parameters.
Then the derived partial differential equation is solved analytically in the Laplace domain. The obtained
results of this work have important significance to understand the effects of different conditions
on the transient pressure behavior of Non-Condensate gas reservoirs.
Keywords :
Pressure transient analysis , Non-condensate gas reservoirs , Boundary conditions , Gas slippage