Title of article :
predicting the relation between biopsychosocial factors and type of childbirth using the decision tree method: a cohort study
Author/Authors :
hajimirzaie, saiedeh sadat shahroud university of medical sciences - student research committee, school of nursing and midwifery, shahroud, iran , tehranian, najmeh tarbiat modares university - faculty of medical sciences - department of reproductive health and midwifery, tehran, iran , mousavi, abbas shahroud university of medical sciences - center for health related social and behavioral sciences research, shahroud, iran , golabpour, amin shahroud university of medical sciences - school of allied medical sciences, shahroud, iran , mirzaii, mehdi shahroud university of medical sciences - school of medicine - department of basic sciences, shahroud, iran , keramat, afsaneh shahroud university of medical sciences - center for health related social and behavioral sciences research, shahroud, iran , khosravi, ahmad shahroud university of medical sciences - ophthalmic epidemiology research center, shahroud, iran
Abstract :
background: with the growing rate of cesarean sections, rising morbidity and mortality thereafter is an important health issue. predictive models can identify individuals with a higher probability of cesarean section, and help them make better decisions. this study aimed to investigate the biopsychosocial factors associated with the method of childbirth and designed a predictive model using the decision tree c4.5 algorithm. methods: in this cohort study, the sample included 170 pregnant women in the third trimester of pregnancy referring to shahroud health care centers (semnan, iran), from 2018 to 2019. blood samples were taken from mothers to measure the estrogen hormone at baseline. birth information was recorded at the follow-up time per 30-42 days postpartum. chi square, independent samples t test, and mann-whitney were used for comparisons between the two groups. modeling was performed with the help of matlab software and c4.5 decision tree algorithm using input variables and target variable (childbirth method). the data were divided into training and testing datasets using the 70-30% method. in both stages, sensitivity, specificity, and accuracy were evaluated by the decision tree algorithm. results: previous method of childbirth, maternal body mass index at childbirth, maternal age, and estrogen were the most significant factors predicting the childbirth method. the decision tree model’s sensitivity, specificity, and accuracy were 85.48%, 94.34%, and 89.57% in the training stage, and 82.35%, 83.87%, and 83.33% in the testing stage, respectively. conclusion: the decision tree model was designed with high accuracy successfully predicted the method of childbirth. by recognizing the contributing factors, policymakers can take preventive action. it should be noted that this article was published in preprint form on the website of research square (https://www.researchsquare. com/article/rs-34770/v1).
Keywords :
cesarean section , estrogens , biological factors , socioeconomic factors
Journal title :
Iranian Journal of Medical Sciences (IJMS)
Journal title :
Iranian Journal of Medical Sciences (IJMS)