Title of article :
A real-time forest fire and smoke detection system using deep learning
Author/Authors :
Mohammed, Raghad K. Department of Basic Sciences - College of Dentistry - University of Baghdad, Baghdad, Iraq
Pages :
11
From page :
2053
To page :
2063
Abstract :
Large parts of the world's forests are threatened by fires. These fires happen continuously every month around the globe. They are very costly to society and cause serious damage to the ecosystem. This raises the necessity to build a detection system to intervene early and take action. Fire and smoke have various colours, textures, and shapes, which are challenging to detect. In the modern world, neural networks are used extensively in most fields of human activities. For the detection of fire and smoke, we suggest a deep learning technology using transfer learning to extract features of forest fire and smoke. We used a pre-trained Inception-ResNet-v2 network on the ImageNet dataset to be trained on our dataset which consists of 1,102 images for each fire and smoke class. The classification accuracy, precision, recall, F1-Score, and specificity were 99.09%, 100%, 98.08%, 99.09%, and 98.30%, respectively. This model has been deployed on a Raspberry Pi device with a camera. For real-time detection, we used the Open CV library to read the camera stream frame by frame and predict the probability of fire or smoke.
Keywords :
Convolutional neural networks , deep learning , object detection , smoke detection , fire detection , transfer learning
Journal title :
International Journal of Nonlinear Analysis and Applications
Serial Year :
2022
Record number :
2712952
Link To Document :
بازگشت