Title of article :
Parametric bootstrapping in a generalized extreme value regression model for binary response: Application in health study
Author/Authors :
Diop, Aba Département de Mathématiques - Université Alioune Diop de Bambey, Sénégal , Deme, El Hadji Département de Mathématiques - Université Gaston Berger de Saint-Louis, Sénégal
Abstract :
Generalized extreme value regression is often more adapted when we investigate
a relationship between a binary response variable that represents a rare event
and potential predictors. In particular, we use the quantile function of the generalized
extreme value distribution as the link function. Bootstrapping assigns measures
of accuracy (bias, variance, confidence intervals, prediction error, hypotheses testing)
to sample estimates. This technique allows estimation of the sampling distribution
of almost any statistic using random sampling methods. Bootstrapping estimates the
properties of an estimator by measuring those properties when sampling from an approximating
distribution. In this paper, we fit the generalized extreme value regression
model and perform a parametric bootstrap method for testing hypotheses and confidence
interval estimation of parameters for the generalized extreme value regression
model with a real data application.
Keywords :
Confidence interval , Generalized extreme value , Hypothesis testing , Parametric bootstrap , Stroke
Journal title :
Journal of Statistical Modelling: Theory and Applications (JSMTA)