Title of article :
Modeling of Ultrasound-Assisted Extraction, Chemical Composition, Antioxidant Activity, Rheological Aspects, and Biological Properties of “Barhang-e-Kabir” Mucilage
Author/Authors :
Alizadeh Behbahani, Behrooz Department of Food Science and Technology - Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, I.R. IRAN , Imani Fooladi, Abbas Ali Applied Microbiology Research Center - Systems Biology and Poisonings Institute - Baqiyatallah University of Medical Sciences, Tehran, I.R. IRAN
Abstract :
In this study, response surface methodology (RSM) was used to investigate the influence of independent process parameters including water to seed ratio (g/g), temperature (°C), time (min), and ultrasonic intensity (%) on the extraction yield of “Barhang-e-Kabir”. Chemical composition, monosaccharide composition (using HPAEC-PAD), molecular conformation, molecular weight properties, Surface tension, ζ-potential, particle size distribution, Fourier Transform InfraRed (FT-IR) spectroscopy, color measurement, Total Phenol Content (TPC), Total Flavonoid Content (TFC), Antioxidant Activity (AA), antimicrobial and dilute-solution and steady-state behavior were evaluated. The optimum condition to obtain maximum extraction yield (13.1 %) was extraction temperature 70 ᵒ C, extraction time 40 min, water to seed ratio of 1:10, and ultrasonic power of 90 %. Plantago major gum (PMG) had 89.24% carbohydrate, 4.53% ash, 4.11% moisture, and 2.12% protein. Viscometric molecular weight and average molecular weight were found to be 1.13 ×105 g/mol and 9.9 ×105 g/mol, respectively. The intrinsic viscosity of PMG was 12.56 dL/g in deionized water at 25 ºC. Steady shear measurement demonstrated that PMG is a shear-thinning fluid with high viscosity at low concentration. TPC, TFC and AA (IC50) tests of PMG showed 89.80 ± 1.23 mg GAE/g dry sample, 123.25 ± 1.32 mg g−1dry sample, and 470.45 ± 0.35 µg/mL, respectively. Prevention of linoleic acid oxidation in the system of ß-Carotene-linoleic acid was equal to 32.45 %. The results showed that Streptococcus pyogenes and Pseudomonas aeruginosa are the most sensitive and highest resistance strain to PMG, respectively.
Keywords :
Plantago major gum , Ultrasound-assisted extraction , Chemical composition , Molecular conformation , Rheological behavior , Biological activity