Title of article :
The Schultz Index for Product Graphs
Author/Authors :
AGUILAR−ALARCÓN, JHON JANE Facultad de Matemáticas - Universidad Autónoma de Guerrero - Av. Lázaro Cárdenas s/n, Col. La Haciendita. Chilpancingo, Guerrero, México , REYNA−HERNÁNDEZ, GERARDO Facultad de Matemáticas - Universidad Autónoma de Guerrero - Av. Lázaro Cárdenas s/n, Col. La Haciendita. Chilpancingo, Guerrero, México , ROMERO−VALENCIA, JESÚS Facultad de Matemáticas - Universidad Autónoma de Guerrero - Av. Lázaro Cárdenas s/n, Col. La Haciendita. Chilpancingo, Guerrero, México , ROSARIO−CAYETANO, OMAR Facultad de Matemáticas - Universidad Autónoma de Guerrero - Av. Lázaro Cárdenas s/n, Col. La Haciendita. Chilpancingo, Guerrero, México
Abstract :
Among the binary operations made with graphs, the
cartesian, corona, and lexicographic are three well-known
products, as well as the cartesian sum. Topological indices are
graph invariants used to describe graphs associated with
molecules, one of these is the Schultz index, which can be
obtained as ∑ where the sum runs
over all pairs of distinct vertices of the graph. In this paper, we
give explicit expressions for the Schultz index of cartesian and
corona, with alternative proofs to those given in the literature, as
well as for lexicographic product and the cartesian sum, all of
these formulas involve order and size of factors, additionally, the
first three involve both Wiener and Schultz indices of
factors, corona and lexicographic also involve Zagreb index and
the last one just Zagreb.
Keywords :
Topological index , Schultz index , Cartesian product , Corona product , Lexicographic product , Cartesian sum
Journal title :
Iranian Journal of Mathematical Chemistry