Title of article :
The Prediction of Low and High-Risk Zones of Tehran during COVID-19 by Using the Random Forest Algorithm
Author/Authors :
Neysani Samani, Najmeh Department of Remote Sensing and Geographical Information System - Faculty of Geography - University of Tehran, Iran , Farrokh Anari, Mehdi Department of Remote Sensing and Geographical Information System - Faculty of Geography - University of Tehran, Iran
Pages :
13
From page :
23
To page :
35
Abstract :
The Coronavirus disease (Covid-19) is one of the infectious and contagious ones called 2019-nCoV acute respiratory disease. Its outbreak was first reported on December 31, 2019, in the Chinese city of Wuhan that quickly spread throughout the country within a few weeks and spread to several other countries, including Italy, the United States, and Germany, within a month. This disease was officially reported in Iran on February 19, 2020. It is important to detect and analyze high risk zones and establish regulations according to the data and the analyses of Geographic Information System (GIS) in epidemiological situations. Meanwhile, the GIS, with its location nature, can be effective in preventing the breakdown of Covid-19 by displaying and analyzing the dangerous zones where people infected with the disease. In fact, recognizing regions based on the risk of getting the disease can influence social restriction policies and urban movement rules in order to prepare daily and weekly plans in different urban regions. In this applied and analytical research, high and low risk zones of Tehran have been identified by using the random forest algorithm which is used for both classification and regression. The algorithm builds decision trees on data samples and then predicts data from each of them, and finally chooses the best solution. In this research, 7 effective criteria have been used in the level of risk of regions toward Covid-19 virus, which is: subway paths and bus for rapid transits, hospitals, administrative and commercial complexes, passageways, population densities and urban traffic. After providing the map of high-risk zones of Covid-19, the Receiver Operating Characteristic curve (ROC) has been used for evaluation. The area under the curve (AUC) obtained from ROC shows an accuracy of 98.8%, which means the high accuracy of this algorithm in predicting high and low zones toward getting the Covid-19 disease.
Farsi abstract :
كوويد 19 يكي از بيماريهاي عفوني و واگيردار است كه بيماري تنفسي حاد انكاو- 2019 ناميده مي شود. گسترش بيماري كويد 19 اولينبار در 31 دسامبر سال 2019 در ووهان چين گزارش شد كه طي چند هفته، به سرعت در سرتاسر چين و طي 1 ماه به چندين كشور ديگر همچون ايتاليا، ايالات متحده امريكا و آلمان گسترش يافت. اين بيماري در ايران به صورت ر سمي در 30 بهمن 1398 تأييد شد. شناسايي و تحليل مناطق پرخطر و ايجاد مقررات باتوجه به داده ها و تحليل هاي سيستم اطلاعات جغرافيايي GIS در شرايط اپيدميولوژيك اهميت دارد. در اين ميان سيستم اطلاعات جغرافيايي با ماهيت مكاني خود مي تواند در جلوگيري از گسترش ويروس كوويد 19 با نمايش و تحليل مناطق خطرناك در ابتلا شدن افراد، مؤثر باشد. شناخت مناطق براساس ميزان خطر ابتلا به بيماري ميتواند براي ارائه سياستهاي محدوديت گذاري اجتماعي و قوانين تردد شهري به منظور تهيه برنامه روزانه و هفتگي در مناطق مختلف شهري مؤثر باشد. در اين پژوهش كاربردي و تحليلي، با استفاده از الگوريتم جنگل تصادفي به شناسايي مناطق پرخطر و كم خطر در شهر تهران پرداخته شده است. در اين پژوهش از 7 معيار مؤثر در خطرپذيري مناطق نسبت به ويروس كوويد 19 استفاده شده است كه عبارت اند از: مسيرهاي مترو و اتوبوس هاي تندرو، بيمارستانها، مراكز اداري و تجاري، معابر، تراكم جمعيت و ترافيك شهري. پس از تهيه نقشۀ مناطق پرخطر ويروس كوويد 19 براي ارزيابي از منحني تشخيص عملكرد نسبي ROC ا ستفاده شده ا ست . سطح زير منحني AUC به د ست آمده از منحني تشخيص عملكرد نسبي، ن شان دهندۀ دقت 98/8 در صد، ا ست كه نشان دهندۀ دقت بالاي اين الگوريتم در جهت پيش بيني مناطق پرخطر و كم خطر نسبت به ابتلاي بيماري كوويد 19 است.
Keywords :
Covid-19 , Location Analysis , Random Forest Algorithm , Epidemiology
Journal title :
The International Journal Of Humanities
Serial Year :
2022
Record number :
2731888
Link To Document :
بازگشت