Title of article :
Comparison of Efficiencies of Neutralizing Agents for Heavy Metal Removal from Acid Mine Drainage
Author/Authors :
Zendelska, Afrodita Faculty of Natural and Technical Sciences - Goce Delchev University, Shtip, Republic of North Macedonia , Trajanova, Adrijana Mine Bucim, Radovish, Republic of North Macedonia , Golomeova, Mirjana Faculty of Natural and Technical Sciences - Goce Delchev University, Shtip, Republic of North Macedonia , Golomeov, Blagoj Faculty of Natural and Technical Sciences - Goce Delchev University, Shtip, Republic of North Macedonia , Mirakovski, Dejan Faculty of Natural and Technical Sciences - Goce Delchev University, Shtip, Republic of North Macedonia , Doneva, Nikolinka Faculty of Natural and Technical Sciences - Goce Delchev University, Shtip, Republic of North Macedonia , Hadzi-Nikolova, Marija Faculty of Natural and Technical Sciences - Goce Delchev University, Shtip, Republic of North Macedonia
Pages :
13
From page :
679
To page :
691
Abstract :
The treatment of acid mine drainages is usually based on two basic technologies, active and passive treatment technologies. Whichever acid mine drainage (AMD) treatment method is employed, a neutralizing procedure that raises the water's pH over 7.0 using alkaline agents is required prior to discharge. A comparison of eight different agents (BaCO3, Na2CO3, NaOH, KOH, K2CO3, MgO, CaCO3, and Ba(OH)2) was performed in order to choose the most effective neutralizing agent for acid mine drainage treatment. The experiments were performed using a multi-component synthetic aqueous solution with an initial concentration of 10 mg/L of the Cu, Mn, Zn, Fe, and Pb ions and an initial pH value of 1.9. According to the research, the most effective neutralizing agent for the removal of heavy metals from a multi-component aqueous solution is MgO, while the least effective agent was Na2CO3. The obtained series of effective neutralizing agents for the removal of heavy metals from a multi- component aqueous solution are presented in the work. The effect of the studied concentration of neutralizing agents depends on the neutralizing agents and heavy metals that are used. The percentage of heavy metals removed from aqueous solutions increases along with rising pH values. The consumption of the neutralizing agent decreases as the concentration of the neutralizing agent is increased. In addition, the time taken to achieve pH depends on the agent concentration. In particular, as the concentration of the neutralizing agent increases, the time to reach the pH decreases.
Keywords :
Heavy metals , Active treatment , Flocculation , Soda ash , Caustic soda
Journal title :
Journal of Mining and Environment
Serial Year :
2022
Record number :
2733391
Link To Document :
بازگشت