Title of article :
THE STRUCTURE OF MODULE LIE DERIVATIONS ON TRIANGULAR BANACH ALGEBRAS
Author/Authors :
Miri ، Mohammad Department of Mathematics - University of Birjand , Nasrabadi ، Ebrahim Department of Mathematics - University of Birjand , Ghorchizadeh ، Ali Department of Mathematics - University of Birjand
Abstract :
In this paper, we introduce the concept of module Lie derivation on Banach algebras and study module Lie derivations on unital triangular Banach algebras $ \mathcal{T}=\Mat{A}{M}{B}$ to its dual. Indeed, we prove that every module (linear) Lie derivation $ \delta: \mathcal{T} \to \mathcal{T}^{\ast}$ can be decomposed as $ \delta = d + \tau $, where $ d: \mathcal{T} \to \mathcal{T}^{\ast} $ is a module (linear) derivation and $ \tau: \mathcal{T} \to Z_{\mathcal{T}}(\mathcal{T}^{\ast}) $ is a module (linear) map vanishing at commutators if and only if this happens for the corner algebras $A$ and $B$.
Keywords :
triangular Banach algebra , module Lie derivation , standard Lie derivation
Journal title :
Journal of Algebraic Systems
Journal title :
Journal of Algebraic Systems