Title of article :
THE STRUCTURE OF MODULE LIE DERIVATIONS ON TRIANGULAR BANACH ALGEBRAS
Author/Authors :
Miri ، Mohammad Department of Mathematics - University of Birjand , Nasrabadi ، Ebrahim Department of Mathematics - University of Birjand , Ghorchizadeh ، Ali Department of Mathematics - University of Birjand
From page :
15
To page :
26
Abstract :
‎In this paper‎, ‎we introduce the concept of module Lie derivation on Banach algebras and study module Lie derivations on unital triangular Banach algebras $ \mathcal{T}=\Mat{A}{M}{B}$ to its dual‎. ‎Indeed‎, ‎we prove that every module (linear) Lie derivation $ \delta‎: ‎\mathcal{T} \to \mathcal{T}^{\ast}$ can be decomposed as $ \delta = d‎ + ‎\tau $‎, ‎where $ d‎: ‎\mathcal{T} \to \mathcal{T}^{\ast} $ is a module (linear) derivation and $ \tau‎: ‎\mathcal{T} \to Z_{\mathcal{T}}(\mathcal{T}^{\ast}) $ is a module (linear) map vanishing at commutators if and only if this happens for ‎the ‎corner algebras $A$ and $B$‎.
Keywords :
triangular Banach algebra , module Lie derivation , standard Lie derivation
Journal title :
Journal of Algebraic Systems
Journal title :
Journal of Algebraic Systems
Record number :
2735377
Link To Document :
بازگشت