Title of article :
Connections between commutative rings and some algebras of logic
Author/Authors :
Flaut ، C. Faculty of Mathematics and Computer Science - Ovidius University , Piciu ، D. Faculty of Science - University of Craiova
Abstract :
In this paper using the connections between some subvarieties of residuated lattices, we investigated some properties of the lattice of ideals in commutative and unitary rings. We give new characterizations for commutative rings A in which Id(A) is an MV-algebra, a Heyting algebra or a Boolean algebra and we establish connections between these types of rings. We are very interested in the finite case and we present summarizing statistics. We show that the lattice of ideals in a finite commutative ring of the form $A=\mathbb{Z} _{k_{1}}\times \mathbb{Z}_{k_{2}}\times ...\times \mathbb{Z}_{k_{r}},$ where $k_{i}=p_{i}^{\alpha _{i}}$ and $p_{i}$ a prime number, for all $i\in \{1,2,...,r\}$, is a Boolean algebra or an MV-algebra (which is not Boolean). Using this result we generate the binary block codes associated to the lattice of ideals in finite commutative rings and we present a new way to generate all (up to an isomorphism) finite MV-algebras using rings.
Keywords :
Commutative ring , Ideal , BCK , algebra , residuated lattice , MV , algebra , Boolean algebra , Heyting algebra , Chang property , block codes
Journal title :
Iranian Journal of Fuzzy Systems (IJFS)
Journal title :
Iranian Journal of Fuzzy Systems (IJFS)