Title of article :
Lee Weight and Generalized Lee Weight for Codes Over ‎$‎‎Z_{2^n}$
Author/Authors :
Farhang Baftani ، Farzaneh Department of Mathematics - Islamic Azad University, Ardabil Branch
From page :
27
To page :
33
Abstract :
‎‎‎‎‎‎Let $‎\mathbb{Z}_m$ be the ring of integers modulo $m$ in which $m=2^n$ for arbitrary $n$‎. ‎In this paper‎, ‎we will obtain a relationship between $wt_L(x)‎, ‎wt_L(y)$ and $wt_L(x+y)$ for any $x‎, ‎y \in ‎\mathbb{Z}_m$‎. ‎‎Let ‎$‎‎d_r^L(C)$‎‎ ‎denote ‎the ‎‎$r‎‎$‎-th generalized Lee weight for code $C$ in which ‎$‎‎C$ ‎is ‎a linear code of length $n$ over $‎\mathbb{Z}_4$‎. Also, ‎suppose that $C_1$ and $ C_2$ are two codes over $‎\mathbb{Z}_4$ and $C$ denotes the $(u‎, ‎u+v)$-construction of them‎. ‎In this paper‎, we will obtain an upper bound for $d_r^L(C)$ for all $r$‎, ‎$1 \leq r \leq rank(C)$‎. In addition, ‎we will obtain $d_1^L(C)$ in terms of $d_1^L(C_1)$ and $d_1^L(C_2)$.
Keywords :
Linear code , Hamming Weight , Generalized Lee Weight , ‎$‎(u , u+v)‎$‎- construction of Codes‎
Journal title :
Mathematics Interdisciplinary Research
Journal title :
Mathematics Interdisciplinary Research
Record number :
2743510
Link To Document :
بازگشت