Title of article :
the structure of module lie derivations on triangular banach algebras
Author/Authors :
miri, mohammad university of birjand - department of mathematics, birjand, iran , nasrabadi, ebrahim university of birjand - department of mathematics, birjand, iran , ghorchizadeh, ali university of birjand - department of mathematics, birjand, iran
Abstract :
in this paper, we introduce the concept of module lie derivation on banach algebras and study module lie derivations on unital triangular banach algebras $ \mathcal{t}=\mat{a}{m}{b}$ to its dual. indeed, we prove that every module (linear) lie derivation $ \delta: \mathcal{t} \to \mathcal{t}^{\ast}$ can be decomposed as $ \delta = d + \tau $, where $ d: \mathcal{t} \to \mathcal{t}^{\ast} $ is a module (linear) derivation and $ \tau: \mathcal{t} \to z_{\mathcal{t}}(\mathcal{t}^{\ast}) $ is a module (linear) map vanishing at commutators if and only if this happens for the corner algebras $a$ and $b$.
Keywords :
triangular banach algebra , module lie derivation , standard lie derivation
Journal title :
Journal of Algebraic Systems
Journal title :
Journal of Algebraic Systems