Title of article :
the structure of module lie derivations on triangular banach algebras
Author/Authors :
miri, mohammad university of birjand - department of mathematics, birjand, iran , nasrabadi, ebrahim university of birjand - department of mathematics, birjand, iran , ghorchizadeh, ali university of birjand - department of mathematics, birjand, iran
From page :
15
To page :
26
Abstract :
‎in this paper‎, ‎we introduce the concept of module lie derivation on banach algebras and study module lie derivations on unital triangular banach algebras $ \mathcal{t}=\mat{a}{m}{b}$ to its dual‎. ‎indeed‎, ‎we prove that every module (linear) lie derivation $ \delta‎: ‎\mathcal{t} \to \mathcal{t}^{\ast}$ can be decomposed as $ \delta = d‎ + ‎\tau $‎, ‎where $ d‎: ‎\mathcal{t} \to \mathcal{t}^{\ast} $ is a module (linear) derivation and $ \tau‎: ‎\mathcal{t} \to z_{\mathcal{t}}(\mathcal{t}^{\ast}) $ is a module (linear) map vanishing at commutators if and only if this happens for ‎the ‎corner algebras $a$ and $b$‎.
Keywords :
triangular banach algebra , module lie derivation , standard lie derivation
Journal title :
Journal of Algebraic Systems
Journal title :
Journal of Algebraic Systems
Record number :
2748847
Link To Document :
بازگشت