Title of article :
Gorenstein Homological Properties and Quasi-Frobenius Bimodules
Author/Authors :
Huang ، Chaoling College of Mathematics and Computer Science - Hanjiang Normal University , Sun ، Yongliang School of Mathematical Sciences - Capital Normal University , Zhou ، Yanbo School of Mathematics and Statistics - Southwest University
From page :
805
To page :
817
Abstract :
We establish relations of Gorenstein homological properties of modules and rings linked by a fixed quasi-Frobenius bimodule. Particularly, let R ⊂ S be a strongly separable quasi-Frobenius extension. The left Gorenstein global dimensions and the left finitistic Gorenstein projective dimensions of rings S and R are equal. Moreover, R is left-Gorenstein (Cohen–Macaulay finite, Cohen–Macaulay free) if and only if so is S.
Keywords :
Quasi , Frobenius extension , Gorenstein projective , injective and flat dimension , Cohen–Macaulay ring , Virtually Gorenstein algebras ,
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2750968
Link To Document :
بازگشت